使用tools/export_model.py导出模型出错
Created by: fimo723
你好,我采用PaddleDetection的tools/export_model.py执行导出模型相关操作,出下如下错误,未查找出相关问题 运行环境为ubuntu16.04 Cuda9+Cudnn7.3 使用PaddleDetection yolov3+mobilenetv1训练正常 使用 python tools/export_model.py -c configs/fruveg/yolov3_mobilenet_v1_voc.yml --output_dir=./inference_model -o weights=output/yolov3_mobilenet_v1_voc/80000 YoloTestFeed.image_shape=[3,608,608] 出现如下错误 Traceback (most recent call last): File "tools/export_model.py", line 118, in main() File "tools/export_model.py", line 88, in main test_feed = create(cfg.test_feed) File "/home/ryg/FruVeg/PaddleDetection/ppdet/core/workspace.py", line 160, in create "the module {} is not registered".format(name) AssertionError: the module YoloTestFee is not registered 使用 ython tools/export_model.py -c configs/fruveg/yolov3_mobilenet_v1_voc.yml --output_dir=./inference_model -o weights=output/yolov3_mobilenet_v1_voc/80000 同样出现错误 Traceback (most recent call last): File "tools/export_model.py", line 118, in main() File "tools/export_model.py", line 88, in main test_feed = create(cfg.test_feed) File "/home/ryg/FruVeg/PaddleDetection/ppdet/core/workspace.py", line 160, in create "the module {} is not registered".format(name) AssertionError: the module YoloTestFee is not registered 使用python tools/configure.py list检查 Available modules in the category 'op':
AnchorGenerator Wrapper for anchor_generator
OP
RPNTargetAssign Wrapper for rpn_target_assign
OP
GenerateProposals Wrapper for generate_proposals
OP
MaskAssigner Wrapper for generate_mask_labels
OP
MultiClassNMS Wrapper for multiclass_nms
OP
BBoxAssigner Wrapper for generate_proposal_labels
OP
RoIAlign Wrapper for roi_align
OP
RoIPool Wrapper for roi_pool
OP
MultiBoxHead Wrapper for multi_box_head
OP
SSDOutputDecoder Wrapper for detection_output
OP
RetinaTargetAssign Wrapper for retinanet_target_assign
OP
RetinaOutputDecoder Wrapper for retinanet_detection_output
OP
BoxCoder Wrapper for box_coder
OP
Available modules in the category 'module':
MultiClassSoftNMS
RPNHead RPN Head
FPNRPNHead RPN Head that supports FPN input
YOLOv3Head Head block for YOLOv3 network
RetinaHead Retina Head
ResNet Residual Network, see https://arxiv.org/abs/1512.03385
ResNetC5 Residual Network, see https://arxiv.org/abs/1512.03385
ResNeXt ResNeXt, see https://arxiv.org/abs/1611.05431
ResNeXtC5 ResNeXt, see https://arxiv.org/abs/1611.05431
DarkNet DarkNet, see https://pjreddie.com/darknet/yolo/
MobileNet MobileNet v1, see https://arxiv.org/abs/1704.04861
SENet Squeeze-and-Excitation Networks, see https://arxiv.org/abs/1709.01507
SENetC5 Squeeze-and-Excitation Networks, see https://arxiv.org/abs/1709.01507
FPN Feature Pyramid Network, see https://arxiv.org/abs/1612.03144
VGG VGG, see https://arxiv.org/abs/1409.1556
BlazeNet BlazeFace, see https://arxiv.org/abs/1907.05047
FaceBoxNet FaceBoxes, see https://https://arxiv.org/abs/1708.05234
CBResNet CBNet, see https://arxiv.org/abs/1909.03625
FPNRoIAlign RoI align pooling for FPN feature maps
XConvNormHead RCNN head with serveral convolution layers
TwoFCHead RCNN head with two Fully Connected layers
BBoxHead RCNN bbox head
MaskHead RCNN mask head
CascadeBBoxHead Cascade RCNN bbox head
CascadeXConvNormHead RCNN head with serveral convolution layers
CascadeTwoFCHead RCNN head with serveral convolution layers
CascadeBBoxAssigner
Available modules in the category 'architecture':
FasterRCNN Faster R-CNN architecture, see https://arxiv.org/abs/1506.01497 MaskRCNN Mask R-CNN architecture, see https://arxiv.org/abs/1703.06870 CascadeRCNN Cascade R-CNN architecture, see https://arxiv.org/abs/1712.00726 CascadeMaskRCNN Cascade Mask R-CNN architecture, see https://arxiv.org/abs/1712.00726 CascadeRCNNClsAware Cascade R-CNN architecture, see https://arxiv.org/abs/1712.00726 YOLOv3 YOLOv3 network, see https://arxiv.org/abs/1804.02767 SSD Single Shot MultiBox Detector, see https://arxiv.org/abs/1512.02325 RetinaNet RetinaNet architecture, see https://arxiv.org/abs/1708.02002 BlazeFace BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs, FaceBoxes FaceBoxes: Sub-millisecond Neural Face Detection on Mobile GPUs,
Available modules in the category 'optim':
LearningRate Learning Rate configuration OptimizerBuilder Build optimizer handles
Available modules in the category 'data':
TrainFeed DataFeed encompasses all data loading related settings
EvalFeed DataFeed encompasses all data loading related settings
TestFeed DataFeed encompasses all data loading related settings
FasterRCNNTrainFeed DataFeed encompasses all data loading related settings
FasterRCNNEvalFeed DataFeed encompasses all data loading related settings
FasterRCNNTestFeed DataFeed encompasses all data loading related settings
MaskRCNNTrainFeed DataFeed encompasses all data loading related settings
MaskRCNNEvalFeed DataFeed encompasses all data loading related settings
MaskRCNNTestFeed DataFeed encompasses all data loading related settings
SSDTrainFeed DataFeed encompasses all data loading related settings
SSDEvalFeed DataFeed encompasses all data loading related settings
SSDTestFeed DataFeed encompasses all data loading related settings
YoloTrainFeed DataFeed encompasses all data loading related settings
YoloEvalFeed DataFeed encompasses all data loading related settings
YoloTestFeed DataFeed encompasses all data loading related settings
不存在缺少模块
盼复