Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • PaddleDetection
  • Issue
  • #590

P
PaddleDetection
  • 项目概览

PaddlePaddle / PaddleDetection
大约 2 年 前同步成功

通知 708
Star 11112
Fork 2696
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 184
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 40
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
PaddleDetection
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 184
    • Issue 184
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 40
    • 合并请求 40
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 5月 03, 2020 by saxon_zh@saxon_zhGuest

调整mask_rcnn_r50_fpn_1x.yml的打印输出,tensorboard不记录召回率

Created by: learning-boy

使用mask_rcnn_r50_fpn_1x.yml训练自定义数据集,每隔200次使用验证集进行评估一次,打印格式为: 2020-05-03 14:01:52,177-INFO: Save model to output/mask_rcnn_r50_fpn_1x/19400. 2020-05-03 14:01:56,182-INFO: Test iter 0 2020-05-03 14:01:56,926-INFO: Test finish iter 20 2020-05-03 14:01:56,927-INFO: Total number of images: 20, inference time: 24.955333250630904 fps. loading annotations into memory... Done (t=0.00s) creating index... index created! 2020-05-03 14:01:56,931-INFO: Start evaluate... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type bbox DONE (t=0.02s). Accumulating evaluation results... DONE (t=0.01s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.707 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.894 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.832 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.140 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.727 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.767 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.217 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.741 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.741 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.300 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.754 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.800 loading annotations into memory... Done (t=0.00s) creating index... index created! 2020-05-03 14:01:56,983-INFO: Start evaluate... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type segm DONE (t=0.02s). Accumulating evaluation results... DONE (t=0.01s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.708 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.894 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.852 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.101 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.705 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.818 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.222 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.733 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.733 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.300 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.731 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.833 2020-05-03 14:01:57,017-INFO: Best test box ap: 0.7444127249129933, in iter: 1800

想问一下,为什么平均精度和召回率会打印两次,就是这个--->Accumulating evaluation results...为什么会计算两次,而且结果是不一样的,map是根据哪一个进行计算,如何将每次评估的map打印出来,就像yolov3一样,打印本次map和最佳map 使用tensorboard进行可视化的时候,没有记录召回率,只有损失和map 谢谢您

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/PaddleDetection#590
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7