Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • PaddleDetection
  • Issue
  • #548

P
PaddleDetection
  • 项目概览

PaddlePaddle / PaddleDetection
大约 2 年 前同步成功

通知 708
Star 11112
Fork 2696
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 184
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 40
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
PaddleDetection
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 184
    • Issue 184
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 40
    • 合并请求 40
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 4月 24, 2020 by saxon_zh@saxon_zhGuest

mAP怪怪的

Created by: Stillremains

我在训练的时候一切都挺正常的,loss也在下降,唯独这个mAP很奇怪啊,0.00 0.01 0.03啥的 反正一直很低 不知道为啥

我的图片大小都是424 * 240的,yml配置的3 * 320 * 320
[Errno 2] No such file or directory: '/home/aistudio/ArtRobot/to/clone/PaddleDetection' /home/aistudio/Robot/to/clone/PaddleDetection /home/aistudio/Robot/to/clone/PaddleDetection DarkNet: [32mnorm_type[0m: sync_bn depth: 53 norm_decay: 0.0 weight_prefix_name: '' EvalReader: batch_size: 8 bufsize: 16 dataset: !VOCDataSet anno_path: val.txt dataset_dir: dataset/voc image_dir: '' label_list: label_list.txt sample_num: -1 use_default_label: false with_background: false drop_empty: false inputs_def: fields: - image - im_size - im_id - gt_bbox - gt_class - is_difficult num_max_boxes: 50 sample_transforms:

  • !DecodeImage to_rgb: true with_mixup: false
  • !ResizeImage interp: 2 max_size: 0 target_size: 608 use_cv2: true
  • !NormalizeImage is_channel_first: false is_scale: true mean:
    • 0.485
    • 0.456
    • 0.406 std:
    • 0.229
    • 0.224
    • 0.225
  • !PadBox num_max_boxes: 50
  • !Permute channel_first: true to_bgr: false worker_num: 8 LearningRate: [32mbase_lr[0m: 5.0e-05 [32mschedulers[0m:
  • !PiecewiseDecay gamma: 0.1 milestones:
    • 15000
    • 18000 values: null
  • !LinearWarmup start_factor: 0.0 steps: 100 OptimizerBuilder: [32mregularizer[0m: factor: 0.0005 type: L2 optimizer: momentum: 0.9 type: Momentum TestReader: batch_size: 1 dataset: !ImageFolder anno_path: dataset/voc/label_list.txt dataset_dir: '' image_dir: '' sample_num: -1 use_default_label: false with_background: false inputs_def: fields:
    • image
    • im_size
    • im_id
    • gt_bbox
    • gt_class
    • is_difficult image_shape:
    • 3
    • 416
    • 416 num_max_boxes: 50 sample_transforms:
  • !DecodeImage to_rgb: true with_mixup: false
  • !ResizeImage interp: 2 max_size: 0 target_size: 608 use_cv2: true
  • !NormalizeImage is_channel_first: false is_scale: true mean:
    • 0.485
    • 0.456
    • 0.406 std:
    • 0.229
    • 0.224
    • 0.225
  • !Permute channel_first: true to_bgr: false TrainReader: batch_size: 1 batch_transforms:
  • !RandomShape random_inter: false sizes:
    • 320
  • !Permute channel_first: true to_bgr: false bufsize: 16 dataset: !VOCDataSet anno_path: train.txt dataset_dir: dataset/voc image_dir: '' label_list: label_list.txt sample_num: -1 use_default_label: false with_background: false drop_last: true inputs_def: fields:
    • image
    • gt_bbox
    • gt_class
    • gt_score image_shape:
    • 3
    • 320
    • 320 num_max_boxes: 50 mixup_epoch: -1 sample_transforms:
  • !DecodeImage to_rgb: true with_mixup: false
  • !NormalizeBox {}
  • !ExpandImage max_ratio: 4.0 mean:
    • 123.675
    • 116.28
    • 103.53 prob: 0.5
  • !RandomInterpImage max_size: 0 target_size: 320
  • !RandomFlipImage is_mask_flip: false is_normalized: true prob: 0.5
  • !NormalizeImage is_channel_first: false is_scale: true mean:
    • 0.485
    • 0.456
    • 0.406 std:
    • 0.229
    • 0.224
    • 0.225
  • !PadBox num_max_boxes: 50
  • !BboxXYXY2XYWH {} shuffle: true use_process: true worker_num: 8 YOLOv3: [32mbackbone[0m: DarkNet use_fine_grained_loss: false yolo_head: YOLOv3Head YOLOv3Head: [32mnms[0m: background_label: -1 keep_top_k: 100 nms_threshold: 0.45 nms_top_k: 1000 normalized: false score_threshold: 0.01 anchor_masks:
    • 6
    • 7
    • 8
    • 3
    • 4
    • 5
    • 0
    • 1
    • 2 anchors:
    • 10
    • 13
    • 16
    • 30
    • 33
    • 23
    • 30
    • 61
    • 62
    • 45
    • 59
    • 119
    • 116
    • 90
    • 156
    • 198
    • 373
    • 326 block_size: 3 drop_block: false keep_prob: 0.9 norm_decay: 0.0 num_classes: 80 weight_prefix_name: '' yolo_loss: YOLOv3Loss YOLOv3Loss: [32mlabel_smooth[0m: false batch_size: 8 ignore_thresh: 0.7 iou_loss: null use_fine_grained_loss: false architecture: YOLOv3 log_smooth_window: 20 map_type: 11point max_iters: 20000 metric: VOC num_classes: 2 pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar save_dir: output snapshot_iter: 500 use_gpu: true weights: output/yolov3_darknet_voc/model_final

2020-04-24 17:30:09,905-INFO: 400 samples in file dataset/voc/val.txt 2020-04-24 17:30:09,906-INFO: places would be ommited when DataLoader is not iterable W0424 17:30:10.761812 5432 device_context.cc:237] Please NOTE: device: 0, CUDA Capability: 70, Driver API Version: 10.1, Runtime API Version: 9.0 W0424 17:30:10.766005 5432 device_context.cc:245] device: 0, cuDNN Version: 7.3. 2020-04-24 17:30:12,432-INFO: Found /home/aistudio/.cache/paddle/weights/DarkNet53_pretrained 2020-04-24 17:30:12,432-INFO: Loading parameters from /home/aistudio/.cache/paddle/weights/DarkNet53_pretrained... 2020-04-24 17:30:12,433-WARNING: /home/aistudio/.cache/paddle/weights/DarkNet53_pretrained.pdparams not found, try to load model file saved with [ save_params, save_persistables, save_vars ] 2020-04-24 17:30:12,433-WARNING: /home/aistudio/.cache/paddle/weights/DarkNet53_pretrained.pdparams not found, try to load model file saved with [ save_params, save_persistables, save_vars ] 2020-04-24 17:30:12,872-INFO: 2000 samples in file dataset/voc/train.txt 2020-04-24 17:30:18,408-INFO: places would be ommited when DataLoader is not iterable I0424 17:30:18.952929 5432 parallel_executor.cc:440] The Program will be executed on CUDA using ParallelExecutor, 1 cards are used, so 1 programs are executed in parallel. I0424 17:30:19.038331 5432 build_strategy.cc:365] SeqOnlyAllReduceOps:0, num_trainers:1 I0424 17:30:19.126165 5432 parallel_executor.cc:307] Inplace strategy is enabled, when build_strategy.enable_inplace = True I0424 17:30:19.156368 5432 parallel_executor.cc:375] Garbage collection strategy is enabled, when FLAGS_eager_delete_tensor_gb = 0 2020-04-24 17:30:19,407-INFO: iter: 0, lr: 0.000000, 'loss': '4773.457031', time: 0.481, eta: 2:40:20 2020-04-24 17:30:20,641-INFO: iter: 20, lr: 0.000010, 'loss': '1409.508789', time: 0.084, eta: 0:28:07 2020-04-24 17:30:21,877-INFO: iter: 40, lr: 0.000020, 'loss': '23.782974', time: 0.062, eta: 0:20:31 2020-04-24 17:30:23,082-INFO: iter: 60, lr: 0.000030, 'loss': '17.599674', time: 0.060, eta: 0:20:03 2020-04-24 17:30:24,301-INFO: iter: 80, lr: 0.000040, 'loss': '15.050756', time: 0.061, eta: 0:20:13 2020-04-24 17:30:25,534-INFO: iter: 100, lr: 0.000050, 'loss': '14.313501', time: 0.061, eta: 0:20:21 2020-04-24 17:30:26,763-INFO: iter: 120, lr: 0.000050, 'loss': '14.838196', time: 0.062, eta: 0:20:27 2020-04-24 17:30:27,982-INFO: iter: 140, lr: 0.000050, 'loss': '14.684652', time: 0.061, eta: 0:20:09 2020-04-24 17:30:29,233-INFO: iter: 160, lr: 0.000050, 'loss': '13.258968', time: 0.063, eta: 0:20:42 2020-04-24 17:30:30,451-INFO: iter: 180, lr: 0.000050, 'loss': '13.263744', time: 0.061, eta: 0:20:06 2020-04-24 17:30:31,713-INFO: iter: 200, lr: 0.000050, 'loss': '10.825136', time: 0.063, eta: 0:20:44 2020-04-24 17:30:32,988-INFO: iter: 220, lr: 0.000050, 'loss': '11.288977', time: 0.064, eta: 0:21:06 2020-04-24 17:30:34,257-INFO: iter: 240, lr: 0.000050, 'loss': '10.903563', time: 0.063, eta: 0:20:53 2020-04-24 17:30:35,506-INFO: iter: 260, lr: 0.000050, 'loss': '9.900716', time: 0.062, eta: 0:20:32 2020-04-24 17:30:36,773-INFO: iter: 280, lr: 0.000050, 'loss': '9.340356', time: 0.063, eta: 0:20:47 2020-04-24 17:30:38,098-INFO: iter: 300, lr: 0.000050, 'loss': '9.690082', time: 0.066, eta: 0:21:43 2020-04-24 17:30:39,352-INFO: iter: 320, lr: 0.000050, 'loss': '8.055832', time: 0.062, eta: 0:20:25 2020-04-24 17:30:40,632-INFO: iter: 340, lr: 0.000050, 'loss': '9.590485', time: 0.065, eta: 0:21:10 2020-04-24 17:30:41,883-INFO: iter: 360, lr: 0.000050, 'loss': '10.166349', time: 0.062, eta: 0:20:24 2020-04-24 17:30:43,123-INFO: iter: 380, lr: 0.000050, 'loss': '10.168574', time: 0.062, eta: 0:20:18 2020-04-24 17:30:44,400-INFO: iter: 400, lr: 0.000050, 'loss': '7.831622', time: 0.064, eta: 0:20:51 2020-04-24 17:30:45,723-INFO: iter: 420, lr: 0.000050, 'loss': '9.169244', time: 0.066, eta: 0:21:31 2020-04-24 17:30:47,123-INFO: iter: 440, lr: 0.000050, 'loss': '7.621997', time: 0.070, eta: 0:22:45 2020-04-24 17:30:48,479-INFO: iter: 460, lr: 0.000050, 'loss': '8.698738', time: 0.068, eta: 0:22:07 2020-04-24 17:30:49,812-INFO: iter: 480, lr: 0.000050, 'loss': '7.786939', time: 0.067, eta: 0:21:44 2020-04-24 17:30:51,805-INFO: iter: 500, lr: 0.000050, 'loss': '7.212985', time: 0.096, eta: 0:31:03 2020-04-24 17:30:51,806-INFO: Save model to output/yolov3_darknet_voc/500. I0424 17:31:01.150171 5432 parallel_executor.cc:440] The Program will be executed on CUDA using ParallelExecutor, 1 cards are used, so 1 programs are executed in parallel. I0424 17:31:01.165114 5432 build_strategy.cc:365] SeqOnlyAllReduceOps:0, num_trainers:1 2020-04-24 17:31:01,582-INFO: Test iter 0 2020-04-24 17:31:06,532-INFO: Test finish iter 50 2020-04-24 17:31:06,532-INFO: Total number of images: 330, inference time: 61.14727857519788 fps. 2020-04-24 17:31:06,532-INFO: Start evaluate... 2020-04-24 17:31:06,543-INFO: Accumulating evaluatation results... 2020-04-24 17:31:06,544-INFO: mAP(0.50, 11point) = 0.00 2020-04-24 17:31:06,545-INFO: Best test box ap: 0.0, in iter: 0 2020-04-24 17:31:07,881-INFO: iter: 520, lr: 0.000050, 'loss': '7.609744', time: 0.808, eta: 4:22:17 2020-04-24 17:31:09,181-INFO: iter: 540, lr: 0.000050, 'loss': '6.739043', time: 0.065, eta: 0:21:06 2020-04-24 17:31:10,447-INFO: iter: 560, lr: 0.000050, 'loss': '6.488116', time: 0.063, eta: 0:20:28 2020-04-24 17:31:11,725-INFO: iter: 580, lr: 0.000050, 'loss': '6.817792', time: 0.064, eta: 0:20:43 2020-04-24 17:31:12,997-INFO: iter: 600, lr: 0.000050, 'loss': '6.678132', time: 0.064, eta: 0:20:33 2020-04-24 17:31:14,245-INFO: iter: 620, lr: 0.000050, 'loss': '7.531629', time: 0.062, eta: 0:20:09 2020-04-24 17:31:15,520-INFO: iter: 640, lr: 0.000050, 'loss': '7.095046', time: 0.064, eta: 0:20:32 2020-04-24 17:31:16,802-INFO: iter: 660, lr: 0.000050, 'loss': '6.469002', time: 0.064, eta: 0:20:37 2020-04-24 17:31:18,029-INFO: iter: 680, lr: 0.000050, 'loss': '7.422760', time: 0.062, eta: 0:19:48 2020-04-24 17:31:19,256-INFO: iter: 700, lr: 0.000050, 'loss': '7.083989', time: 0.061, eta: 0:19:44 2020-04-24 17:31:20,513-INFO: iter: 720, lr: 0.000050, 'loss': '6.064008', time: 0.063, eta: 0:20:06 2020-04-24 17:31:21,766-INFO: iter: 740, lr: 0.000050, 'loss': '6.777224', time: 0.063, eta: 0:20:11 2020-04-24 17:31:23,025-INFO: iter: 760, lr: 0.000050, 'loss': '6.657913', time: 0.063, eta: 0:20:07 2020-04-24 17:31:24,285-INFO: iter: 780, lr: 0.000050, 'loss': '6.082125', time: 0.063, eta: 0:20:12 2020-04-24 17:31:25,566-INFO: iter: 800, lr: 0.000050, 'loss': '7.032570', time: 0.064, eta: 0:20:29 2020-04-24 17:31:26,876-INFO: iter: 820, lr: 0.000050, 'loss': '6.071781', time: 0.065, eta: 0:20:54 2020-04-24 17:31:28,104-INFO: iter: 840, lr: 0.000050, 'loss': '5.644063', time: 0.062, eta: 0:19:42 2020-04-24 17:31:29,328-INFO: iter: 860, lr: 0.000050, 'loss': '5.783629', time: 0.061, eta: 0:19:31 2020-04-24 17:31:30,584-INFO: iter: 880, lr: 0.000050, 'loss': '6.077067', time: 0.063, eta: 0:19:58 2020-04-24 17:31:31,877-INFO: iter: 900, lr: 0.000050, 'loss': '6.488541', time: 0.065, eta: 0:20:35 2020-04-24 17:31:33,123-INFO: iter: 920, lr: 0.000050, 'loss': '6.573437', time: 0.062, eta: 0:19:48 2020-04-24 17:31:34,390-INFO: iter: 940, lr: 0.000050, 'loss': '6.228198', time: 0.063, eta: 0:20:06 2020-04-24 17:31:35,642-INFO: iter: 960, lr: 0.000050, 'loss': '6.231107', time: 0.062, eta: 0:19:48 2020-04-24 17:31:36,906-INFO: iter: 980, lr: 0.000050, 'loss': '6.189282', time: 0.063, eta: 0:20:03 2020-04-24 17:31:38,211-INFO: iter: 1000, lr: 0.000050, 'loss': '5.421929', time: 0.065, eta: 0:20:41 2020-04-24 17:31:38,211-INFO: Save model to output/yolov3_darknet_voc/1000. 2020-04-24 17:31:43,979-INFO: Test iter 0 2020-04-24 17:31:48,530-INFO: Test finish iter 50 2020-04-24 17:31:48,530-INFO: Total number of images: 400, inference time: 84.8747262740581 fps. 2020-04-24 17:31:48,530-INFO: Start evaluate... 2020-04-24 17:31:48,566-INFO: Accumulating evaluatation results... 2020-04-24 17:31:48,569-INFO: mAP(0.50, 11point) = 1.70 2020-04-24 17:31:48,570-INFO: Save model to output/yolov3_darknet_voc/best_model. 2020-04-24 17:31:54,048-INFO: Best test box ap: 1.7039429287573509, in iter: 1000 2020-04-24 17:31:55,334-INFO: iter: 1020, lr: 0.000050, 'loss': '6.135723', time: 0.856, eta: 4:30:48 2020-04-24 17:31:56,595-INFO: iter: 1040, lr: 0.000050, 'loss': '5.716703', time: 0.063, eta: 0:19:52 2020-04-24 17:31:57,892-INFO: iter: 1060, lr: 0.000050, 'loss': '5.570798', time: 0.065, eta: 0:20:31 2020-04-24 17:31:59,190-INFO: iter: 1080, lr: 0.000050, 'loss': '5.764952', time: 0.065, eta: 0:20:28 2020-04-24 17:32:00,481-INFO: iter: 1100, lr: 0.000050, 'loss': '4.758157', time: 0.065, eta: 0:20:19 2020-04-24 17:32:01,787-INFO: iter: 1120, lr: 0.000050, 'loss': '5.529131', time: 0.065, eta: 0:20:27 2020-04-24 17:32:03,079-INFO: iter: 1140, lr: 0.000050, 'loss': '5.184276', time: 0.065, eta: 0:20:24 2020-04-24 17:32:04,317-INFO: iter: 1160, lr: 0.000050, 'loss': '5.358259', time: 0.062, eta: 0:19:25 2020-04-24 17:32:05,583-INFO: iter: 1180, lr: 0.000050, 'loss': '5.288213', time: 0.063, eta: 0:19:43 2020-04-24 17:32:06,877-INFO: iter: 1200, lr: 0.000050, 'loss': '5.238584', time: 0.065, eta: 0:20:20 2020-04-24 17:32:08,127-INFO: iter: 1220, lr: 0.000050, 'loss': '5.148386', time: 0.063, eta: 0:19:36 2020-04-24 17:32:09,392-INFO: iter: 1240, lr: 0.000050, 'loss': '5.641284', time: 0.063, eta: 0:19:49 2020-04-24 17:32:10,659-INFO: iter: 1260, lr: 0.000050, 'loss': '4.579816', time: 0.063, eta: 0:19:38 2020-04-24 17:32:11,953-INFO: iter: 1280, lr: 0.000050, 'loss': '5.127717', time: 0.065, eta: 0:20:12 2020-04-24 17:32:13,225-INFO: iter: 1300, lr: 0.000050, 'loss': '4.734833', time: 0.064, eta: 0:19:53 2020-04-24 17:32:14,479-INFO: iter: 1320, lr: 0.000050, 'loss': '5.967862', time: 0.063, eta: 0:19:29 2020-04-24 17:32:15,736-INFO: iter: 1340, lr: 0.000050, 'loss': '5.260326', time: 0.063, eta: 0:19:34 2020-04-24 17:32:17,002-INFO: iter: 1360, lr: 0.000050, 'loss': '4.766984', time: 0.063, eta: 0:19:40 2020-04-24 17:32:18,262-INFO: iter: 1380, lr: 0.000050, 'loss': '5.429349', time: 0.063, eta: 0:19:32 2020-04-24 17:32:19,552-INFO: iter: 1400, lr: 0.000050, 'loss': '4.848065', time: 0.065, eta: 0:20:00 2020-04-24 17:32:20,814-INFO: iter: 1420, lr: 0.000050, 'loss': '4.363996', time: 0.063, eta: 0:19:31 2020-04-24 17:32:22,089-INFO: iter: 1440, lr: 0.000050, 'loss': '4.136049', time: 0.064, eta: 0:19:44 2020-04-24 17:32:23,324-INFO: iter: 1460, lr: 0.000050, 'loss': '4.752804', time: 0.062, eta: 0:19:03 2020-04-24 17:32:24,566-INFO: iter: 1480, lr: 0.000050, 'loss': '4.147980', time: 0.062, eta: 0:19:11 2020-04-24 17:32:25,824-INFO: iter: 1500, lr: 0.000050, 'loss': '4.594424', time: 0.063, eta: 0:19:23 2020-04-24 17:32:25,824-INFO: Save model to output/yolov3_darknet_voc/1500. 2020-04-24 17:32:31,548-INFO: Test iter 0 2020-04-24 17:32:36,132-INFO: Test finish iter 50 2020-04-24 17:32:36,132-INFO: Total number of images: 379, inference time: 79.89329957557031 fps. 2020-04-24 17:32:36,133-INFO: Start evaluate... 2020-04-24 17:32:36,179-INFO: Accumulating evaluatation results... 2020-04-24 17:32:36,181-INFO: mAP(0.50, 11point) = 0.00 2020-04-24 17:32:36,182-INFO: Best test box ap: 1.7039429287573509, in iter: 1000 2020-04-24 17:32:37,468-INFO: iter: 1520, lr: 0.000050, 'loss': '4.950881', time: 0.582, eta: 2:59:11 2020-04-24 17:32:38,727-INFO: iter: 1540, lr: 0.000050, 'loss': '5.070341', time: 0.063, eta: 0:19:28 2020-04-24 17:32:39,996-INFO: iter: 1560, lr: 0.000050, 'loss': '4.386658', time: 0.063, eta: 0:19:29 2020-04-24 17:32:41,298-INFO: iter: 1580, lr: 0.000050, 'loss': '6.025648', time: 0.065, eta: 0:19:50 2020-04-24 17:32:42,558-INFO: iter: 1600, lr: 0.000050, 'loss': '4.983917', time: 0.063, eta: 0:19:23 2020-04-24 17:32:43,846-INFO: iter: 1620, lr: 0.000050, 'loss': '4.397292', time: 0.065, eta: 0:19:45 2020-04-24 17:32:45,166-INFO: iter: 1640, lr: 0.000050, 'loss': '5.149240', time: 0.066, eta: 0:20:16 2020-04-24 17:32:46,489-INFO: iter: 1660, lr: 0.000050, 'loss': '4.536232', time: 0.066, eta: 0:20:05 2020-04-24 17:32:47,768-INFO: iter: 1680, lr: 0.000050, 'loss': '5.557236', time: 0.064, eta: 0:19:37 2020-04-24 17:32:49,015-INFO: iter: 1700, lr: 0.000050, 'loss': '4.213097', time: 0.062, eta: 0:18:53 2020-04-24 17:32:50,300-INFO: iter: 1720, lr: 0.000050, 'loss': '4.521544', time: 0.064, eta: 0:19:36 2020-04-24 17:32:51,622-INFO: iter: 1740, lr: 0.000050, 'loss': '5.162963', time: 0.066, eta: 0:20:12 2020-04-24 17:32:52,877-INFO: iter: 1760, lr: 0.000050, 'loss': '5.276527', time: 0.062, eta: 0:18:59 2020-04-24 17:32:54,134-INFO: iter: 1780, lr: 0.000050, 'loss': '4.523553', time: 0.063, eta: 0:19:10 2020-04-24 17:32:55,399-INFO: iter: 1800, lr: 0.000050, 'loss': '5.220922', time: 0.063, eta: 0:19:00 2020-04-24 17:32:56,682-INFO: iter: 1820, lr: 0.000050, 'loss': '4.543086', time: 0.064, eta: 0:19:27 2020-04-24 17:32:57,934-INFO: iter: 1840, lr: 0.000050, 'loss': '5.097485', time: 0.063, eta: 0:19:03 2020-04-24 17:32:59,201-INFO: iter: 1860, lr: 0.000050, 'loss': '4.963557', time: 0.063, eta: 0:19:05 2020-04-24 17:33:00,486-INFO: iter: 1880, lr: 0.000050, 'loss': '4.227762', time: 0.064, eta: 0:19:28 2020-04-24 17:33:01,749-INFO: iter: 1900, lr: 0.000050, 'loss': '4.564885', time: 0.063, eta: 0:19:03 2020-04-24 17:33:03,010-INFO: iter: 1920, lr: 0.000050, 'loss': '5.124654', time: 0.063, eta: 0:18:59 2020-04-24 17:33:04,334-INFO: iter: 1940, lr: 0.000050, 'loss': '4.680788', time: 0.066, eta: 0:19:51 2020-04-24 17:33:05,641-INFO: iter: 1960, lr: 0.000050, 'loss': '4.832697', time: 0.066, eta: 0:19:42 2020-04-24 17:33:06,941-INFO: iter: 1980, lr: 0.000050, 'loss': '5.309194', time: 0.065, eta: 0:19:28 2020-04-24 17:33:08,185-INFO: iter: 2000, lr: 0.000050, 'loss': '4.407988', time: 0.062, eta: 0:18:43 2020-04-24 17:33:08,185-INFO: Save model to output/yolov3_darknet_voc/2000. 2020-04-24 17:33:13,928-INFO: Test iter 0 2020-04-24 17:33:18,429-INFO: Test finish iter 50 2020-04-24 17:33:18,429-INFO: Total number of images: 393, inference time: 84.39176058310929 fps. 2020-04-24 17:33:18,429-INFO: Start evaluate... 2020-04-24 17:33:18,454-INFO: Accumulating evaluatation results... 2020-04-24 17:33:18,456-INFO: mAP(0.50, 11point) = 0.00 2020-04-24 17:33:18,456-INFO: Best test box ap: 1.7039429287573509, in iter: 1000 2020-04-24 17:33:19,701-INFO: iter: 2020, lr: 0.000050, 'loss': '3.878085', time: 0.576, eta: 2:52:31 2020-04-24 17:33:20,970-INFO: iter: 2040, lr: 0.000050, 'loss': '4.676570', time: 0.063, eta: 0:18:58 2020-04-24 17:33:22,236-INFO: iter: 2060, lr: 0.000050, 'loss': '4.356619', time: 0.063, eta: 0:18:51 2020-04-24 17:33:23,525-INFO: iter: 2080, lr: 0.000050, 'loss': '4.460249', time: 0.065, eta: 0:19:20 2020-04-24 17:33:24,801-INFO: iter: 2100, lr: 0.000050, 'loss': '4.970535', time: 0.064, eta: 0:18:58 2020-04-24 17:33:26,046-INFO: iter: 2120, lr: 0.000050, 'loss': '4.742765', time: 0.063, eta: 0:18:38 2020-04-24 17:33:27,309-INFO: iter: 2140, lr: 0.000050, 'loss': '4.687847', time: 0.063, eta: 0:18:47 2020-04-24 17:33:28,553-INFO: iter: 2160, lr: 0.000050, 'loss': '3.581655', time: 0.062, eta: 0:18:22 2020-04-24 17:33:29,861-INFO: iter: 2180, lr: 0.000050, 'loss': '3.991680', time: 0.065, eta: 0:19:23 2020-04-24 17:33:31,137-INFO: iter: 2200, lr: 0.000050, 'loss': '3.999994', time: 0.064, eta: 0:19:03 2020-04-24 17:33:32,372-INFO: iter: 2220, lr: 0.000050, 'loss': '4.434382', time: 0.062, eta: 0:18:18 2020-04-24 17:33:33,634-INFO: iter: 2240, lr: 0.000050, 'loss': '4.732727', time: 0.063, eta: 0:18:34 2020-04-24 17:33:34,874-INFO: iter: 2260, lr: 0.000050, 'loss': '4.424267', time: 0.062, eta: 0:18:19 2020-04-24 17:33:36,121-INFO: iter: 2280, lr: 0.000050, 'loss': '4.294651', time: 0.063, eta: 0:18:30 2020-04-24 17:33:37,371-INFO: iter: 2300, lr: 0.000050, 'loss': '4.137033', time: 0.063, eta: 0:18:27 2020-04-24 17:33:38,633-INFO: iter: 2320, lr: 0.000050, 'loss': '4.550075', time: 0.063, eta: 0:18:33 2020-04-24 17:33:39,874-INFO: iter: 2340, lr: 0.000050, 'loss': '4.238888', time: 0.062, eta: 0:18:14 2020-04-24 17:33:41,145-INFO: iter: 2360, lr: 0.000050, 'loss': '5.045639', time: 0.063, eta: 0:18:40 2020-04-24 17:33:42,397-INFO: iter: 2380, lr: 0.000050, 'loss': '4.404350', time: 0.063, eta: 0:18:27 2020-04-24 17:33:43,657-INFO: iter: 2400, lr: 0.000050, 'loss': '4.916344', time: 0.063, eta: 0:18:24 2020-04-24 17:33:44,882-INFO: iter: 2420, lr: 0.000050, 'loss': '5.149046', time: 0.061, eta: 0:18:01 2020-04-24 17:33:46,128-INFO: iter: 2440, lr: 0.000050, 'loss': '4.403241', time: 0.062, eta: 0:18:13 2020-04-24 17:33:47,386-INFO: iter: 2460, lr: 0.000050, 'loss': '3.845775', time: 0.063, eta: 0:18:20 2020-04-24 17:33:48,642-INFO: iter: 2480, lr: 0.000050, 'loss': '3.618093', time: 0.063, eta: 0:18:22 2020-04-24 17:33:49,903-INFO: iter: 2500, lr: 0.000050, 'loss': '4.390198', time: 0.063, eta: 0:18:22 2020-04-24 17:33:49,903-INFO: Save model to output/yolov3_darknet_voc/2500. 2020-04-24 17:33:55,466-INFO: Test iter 0 2020-04-24 17:33:59,967-INFO: Test finish iter 50 2020-04-24 17:33:59,967-INFO: Total number of images: 295, inference time: 63.39115944854206 fps. 2020-04-24 17:33:59,968-INFO: Start evaluate... 2020-04-24 17:33:59,983-INFO: Accumulating evaluatation results... 2020-04-24 17:33:59,984-INFO: mAP(0.50, 11point) = 0.00 2020-04-24 17:33:59,985-INFO: Best test box ap: 1.7039429287573509, in iter: 1000 2020-04-24 17:34:01,272-INFO: iter: 2520, lr: 0.000050, 'loss': '3.677579', time: 0.568, eta: 2:45:34 2020-04-24 17:34:02,557-INFO: iter: 2540, lr: 0.000050, 'loss': '3.887392', time: 0.064, eta: 0:18:44 2020-04-24 17:34:03,836-INFO: iter: 2560, lr: 0.000050, 'loss': '4.133051', time: 0.064, eta: 0:18:28 2020-04-24 17:34:05,141-INFO: iter: 2580, lr: 0.000050, 'loss': '4.074432', time: 0.066, eta: 0:19:02 2020-04-24 17:34:06,501-INFO: iter: 2600, lr: 0.000050, 'loss': '3.974929', time: 0.068, eta: 0:19:40 2020-04-24 17:34:07,730-INFO: iter: 2620, lr: 0.000050, 'loss': '3.798744', time: 0.062, eta: 0:17:52 2020-04-24 17:34:08,969-INFO: iter: 2640, lr: 0.000050, 'loss': '4.136965', time: 0.062, eta: 0:17:52 2020-04-24 17:34:10,262-INFO: iter: 2660, lr: 0.000050, 'loss': '4.826468', time: 0.064, eta: 0:18:36 2020-04-24 17:34:11,562-INFO: iter: 2680, lr: 0.000050, 'loss': '3.941839', time: 0.065, eta: 0:18:51 2020-04-24 17:34:12,873-INFO: iter: 2700, lr: 0.000050, 'loss': '4.404241', time: 0.066, eta: 0:18:53 2020-04-24 17:34:14,155-INFO: iter: 2720, lr: 0.000050, 'loss': '3.813055', time: 0.064, eta: 0:18:27 2020-04-24 17:34:15,457-INFO: iter: 2740, lr: 0.000050, 'loss': '4.170776', time: 0.065, eta: 0:18:46 2020-04-24 17:34:16,698-INFO: iter: 2760, lr: 0.000050, 'loss': '4.172401', time: 0.062, eta: 0:17:50 2020-04-24 17:34:17,965-INFO: iter: 2780, lr: 0.000050, 'loss': '4.235612', time: 0.063, eta: 0:18:04 2020-04-24 17:34:19,267-INFO: iter: 2800, lr: 0.000050, 'loss': '4.621957', time: 0.065, eta: 0:18:43 2020-04-24 17:34:20,521-INFO: iter: 2820, lr: 0.000050, 'loss': '3.950712', time: 0.063, eta: 0:17:57 2020-04-24 17:34:21,768-INFO: iter: 2840, lr: 0.000050, 'loss': '4.592880', time: 0.062, eta: 0:17:51 2020-04-24 17:34:23,016-INFO: iter: 2860, lr: 0.000050, 'loss': '4.211164', time: 0.062, eta: 0:17:49 2020-04-24 17:34:24,268-INFO: iter: 2880, lr: 0.000050, 'loss': '3.842400', time: 0.063, eta: 0:17:51 2020-04-24 17:34:25,522-INFO: iter: 2900, lr: 0.000050, 'loss': '3.910372', time: 0.063, eta: 0:17:51 2020-04-24 17:34:26,780-INFO: iter: 2920, lr: 0.000050, 'loss': '4.204413', time: 0.063, eta: 0:17:54 2020-04-24 17:34:27,998-INFO: iter: 2940, lr: 0.000050, 'loss': '4.185066', time: 0.061, eta: 0:17:20 2020-04-24 17:34:29,250-INFO: iter: 2960, lr: 0.000050, 'loss': '4.126792', time: 0.063, eta: 0:17:46 2020-04-24 17:34:30,503-INFO: iter: 2980, lr: 0.000050, 'loss': '4.319037', time: 0.063, eta: 0:17:45 2020-04-24 17:34:31,756-INFO: iter: 3000, lr: 0.000050, 'loss': '4.234204', time: 0.063, eta: 0:17:44 2020-04-24 17:34:31,756-INFO: Save model to output/yolov3_darknet_voc/3000. 2020-04-24 17:34:37,192-INFO: Test iter 0 2020-04-24 17:34:41,735-INFO: Test finish iter 50 2020-04-24 17:34:41,736-INFO: Total number of images: 295, inference time: 62.70573926017223 fps. 2020-04-24 17:34:41,736-INFO: Start evaluate... 2020-04-24 17:34:41,751-INFO: Accumulating evaluatation results... 2020-04-24 17:34:41,752-INFO: mAP(0.50, 11point) = 0.00 2020-04-24 17:34:41,753-INFO: Best test box ap: 1.7039429287573509, in iter: 1000 2020-04-24 17:34:43,030-INFO: iter: 3020, lr: 0.000050, 'loss': '3.677397', time: 0.564, eta: 2:39:32 2020-04-24 17:34:44,290-INFO: iter: 3040, lr: 0.000050, 'loss': '4.367497', time: 0.063, eta: 0:17:46 2020-04-24 17:34:45,551-INFO: iter: 3060, lr: 0.000050, 'loss': '4.018065', time: 0.063, eta: 0:17:48 2020-04-24 17:34:46,818-INFO: iter: 3080, lr: 0.000050, 'loss': '3.782524', time: 0.063, eta: 0:17:51 2020-04-24 17:34:48,078-INFO: iter: 3100, lr: 0.000050, 'loss': '3.648066', time: 0.063, eta: 0:17:43 2020-04-24 17:34:49,327-INFO: iter: 3120, lr: 0.000050, 'loss': '4.028178', time: 0.062, eta: 0:17:34 2020-04-24 17:34:50,588-INFO: iter: 3140, lr: 0.000050, 'loss': '3.712103', time: 0.063, eta: 0:17:44 2020-04-24 17:34:51,848-INFO: iter: 3160, lr: 0.000050, 'loss': '3.744527', time: 0.063, eta: 0:17:41 2020-04-24 17:34:53,129-INFO: iter: 3180, lr: 0.000050, 'loss': '3.641301', time: 0.064, eta: 0:17:52 2020-04-24 17:34:54,396-INFO: iter: 3200, lr: 0.000050, 'loss': '4.225049', time: 0.063, eta: 0:17:42 2020-04-24 17:34:55,650-INFO: iter: 3220, lr: 0.000050, 'loss': '4.591234', time: 0.063, eta: 0:17:38 2020-04-24 17:34:56,917-INFO: iter: 3240, lr: 0.000050, 'loss': '4.941355', time: 0.063, eta: 0:17:41 2020-04-24 17:34:58,182-INFO: iter: 3260, lr: 0.000050, 'loss': '4.361785', time: 0.063, eta: 0:17:37 2020-04-24 17:34:59,454-INFO: iter: 3280, lr: 0.000050, 'loss': '4.044730', time: 0.063, eta: 0:17:38 2020-04-24 17:35:00,696-INFO: iter: 3300, lr: 0.000050, 'loss': '4.055280', time: 0.062, eta: 0:17:21 2020-04-24 17:35:01,948-INFO: iter: 3320, lr: 0.000050, 'loss': '3.779968', time: 0.063, eta: 0:17:23 2020-04-24 17:35:03,213-INFO: iter: 3340, lr: 0.000050, 'loss': '3.972363', time: 0.063, eta: 0:17:32 2020-04-24 17:35:04,562-INFO: iter: 3360, lr: 0.000050, 'loss': '3.513335', time: 0.067, eta: 0:18:37 2020-04-24 17:35:05,822-INFO: iter: 3380, lr: 0.000050, 'loss': '3.236209', time: 0.063, eta: 0:17:33 2020-04-24 17:35:07,056-INFO: iter: 3400, lr: 0.000050, 'loss': '3.346684', time: 0.062, eta: 0:17:06 2020-04-24 17:35:08,299-INFO: iter: 3420, lr: 0.000050, 'loss': '3.462277', time: 0.062, eta: 0:17:01 2020-04-24 17:35:09,527-INFO: iter: 3440, lr: 0.000050, 'loss': '3.696031', time: 0.062, eta: 0:17:06 2020-04-24 17:35:10,776-INFO: iter: 3460, lr: 0.000050, 'loss': '3.872711', time: 0.062, eta: 0:17:11 2020-04-24 17:35:12,022-INFO: iter: 3480, lr: 0.000050, 'loss': '4.090693', time: 0.062, eta: 0:17:10 2020-04-24 17:35:13,296-INFO: iter: 3500, lr: 0.000050, 'loss': '3.955009', time: 0.063, eta: 0:17:27 2020-04-24 17:35:13,296-INFO: Save model to output/yolov3_darknet_voc/3500. 2020-04-24 17:35:18,885-INFO: Test iter 0 2020-04-24 17:35:23,427-INFO: Test finish iter 50 2020-04-24 17:35:23,427-INFO: Total number of images: 253, inference time: 53.88793293180902 fps. 2020-04-24 17:35:23,428-INFO: Start evaluate... 2020-04-24 17:35:23,437-INFO: Accumulating evaluatation results... 2020-04-24 17:35:23,437-INFO: mAP(0.50, 11point) = 0.00 2020-04-24 17:35:23,438-INFO: Best test box ap: 1.7039429287573509, in iter: 1000 2020-04-24 17:35:24,721-INFO: iter: 3520, lr: 0.000050, 'loss': '3.986967', time: 0.571, eta: 2:36:52 2020-04-24 17:35:26,058-INFO: iter: 3540, lr: 0.000050, 'loss': '4.015666', time: 0.067, eta: 0:18:17 2020-04-24 17:35:27,334-INFO: iter: 3560, lr: 0.000050, 'loss': '4.229417', time: 0.064, eta: 0:17:31 2020-04-24 17:35:28,576-INFO: iter: 3580, lr: 0.000050, 'loss': '4.065807', time: 0.062, eta: 0:17:03 2020-04-24 17:35:29,849-INFO: iter: 3600, lr: 0.000050, 'loss': '3.542905', time: 0.064, eta: 0:17:23 2020-04-24 17:35:31,100-INFO: iter: 3620, lr: 0.000050, 'loss': '3.862190', time: 0.063, eta: 0:17:04 2020-04-24 17:35:32,405-INFO: iter: 3640, lr: 0.000050, 'loss': '3.813509', time: 0.065, eta: 0:17:44 2020-04-24 17:35:33,738-INFO: iter: 3660, lr: 0.000050, 'loss': '3.870656', time: 0.067, eta: 0:18:08 2020-04-24 17:35:35,060-INFO: iter: 3680, lr: 0.000050, 'loss': '4.449153', time: 0.066, eta: 0:17:58 2020-04-24 17:35:36,354-INFO: iter: 3700, lr: 0.000050, 'loss': '3.878476', time: 0.065, eta: 0:17:34 2020-04-24 17:35:37,663-INFO: iter: 3720, lr: 0.000050, 'loss': '3.861081', time: 0.066, eta: 0:17:48 2020-04-24 17:35:38,952-INFO: iter: 3740, lr: 0.000050, 'loss': '3.699723', time: 0.065, eta: 0:17:29 2020-04-24 17:35:40,268-INFO: iter: 3760, lr: 0.000050, 'loss': '3.784134', time: 0.066, eta: 0:17:47 2020-04-24 17:35:41,541-INFO: iter: 3780, lr: 0.000050, 'loss': '3.079592', time: 0.064, eta: 0:17:10 2020-04-24 17:35:42,824-INFO: iter: 3800, lr: 0.000050, 'loss': '3.752543', time: 0.064, eta: 0:17:16 2020-04-24 17:35:44,100-INFO: iter: 3820, lr: 0.000050, 'loss': '3.995926', time: 0.064, eta: 0:17:08 2020-04-24 17:35:45,401-INFO: iter: 3840, lr: 0.000050, 'loss': '3.735324', time: 0.066, eta: 0:17:38 2020-04-24 17:35:46,708-INFO: iter: 3860, lr: 0.000050, 'loss': '3.492469', time: 0.065, eta: 0:17:33 2020-04-24 17:35:47,987-INFO: iter: 3880, lr: 0.000050, 'loss': '4.250998', time: 0.064, eta: 0:17:14 2020-04-24 17:35:49,241-INFO: iter: 3900, lr: 0.000050, 'loss': '3.767215', time: 0.063, eta: 0:16:46 2020-04-24 17:35:50,511-INFO: iter: 3920, lr: 0.000050, 'loss': '4.088290', time: 0.063, eta: 0:17:00 2020-04-24 17:35:51,769-INFO: iter: 3940, lr: 0.000050, 'loss': '3.392008', time: 0.063, eta: 0:16:51 2020-04-24 17:35:53,037-INFO: iter: 3960, lr: 0.000050, 'loss': '3.524767', time: 0.063, eta: 0:16:50 2020-04-24 17:35:54,267-INFO: iter: 3980, lr: 0.000050, 'loss': '3.789393', time: 0.062, eta: 0:16:33 2020-04-24 17:35:55,512-INFO: iter: 4000, lr: 0.000050, 'loss': '4.084249', time: 0.062, eta: 0:16:35 2020-04-24 17:35:55,512-INFO: Save model to output/yolov3_darknet_voc/4000. 2020-04-24 17:36:01,219-INFO: Test iter 0 2020-04-24 17:36:05,835-INFO: Test finish iter 50 2020-04-24 17:36:05,835-INFO: Total number of images: 225, inference time: 47.037228265867356 fps. 2020-04-24 17:36:05,836-INFO: Start evaluate... 2020-04-24 17:36:05,844-INFO: Accumulating evaluatation results... 2020-04-24 17:36:05,844-INFO: mAP(0.50, 11point) = 0.00 2020-04-24 17:36:05,845-INFO: Best test box ap: 1.7039429287573509, in iter: 1000 2020-04-24 17:36:07,135-INFO: iter: 4020, lr: 0.000050, 'loss': '3.758350', time: 0.581, eta: 2:34:44 2020-04-24 17:36:08,421-INFO: iter: 4040, lr: 0.000050, 'loss': '4.207700', time: 0.064, eta: 0:17:08 2020-04-24 17:36:09,649-INFO: iter: 4060, lr: 0.000050, 'loss': '3.793053', time: 0.061, eta: 0:16:18 2020-04-24 17:36:10,942-INFO: iter: 4080, lr: 0.000050, 'loss': '3.398545', time: 0.064, eta: 0:17:03 2020-04-24 17:36:12,247-INFO: iter: 4100, lr: 0.000050, 'loss': '3.700174', time: 0.065, eta: 0:17:17 2020-04-24 17:36:13,555-INFO: iter: 4120, lr: 0.000050, 'loss': '3.585165', time: 0.065, eta: 0:17:08 2020-04-24 17:36:14,850-INFO: iter: 4140, lr: 0.000050, 'loss': '3.582839', time: 0.066, eta: 0:17:22 2020-04-24 17:36:16,098-INFO: iter: 4160, lr: 0.000050, 'loss': '3.046422', time: 0.062, eta: 0:16:25 2020-04-24 17:36:17,373-INFO: iter: 4180, lr: 0.000050, 'loss': '3.401401', time: 0.064, eta: 0:16:50 2020-04-24 17:36:18,636-INFO: iter: 4200, lr: 0.000050, 'loss': '3.720748', time: 0.063, eta: 0:16:32 2020-04-24 17:36:19,885-INFO: iter: 4220, lr: 0.000050, 'loss': '3.703779', time: 0.063, eta: 0:16:32 2020-04-24 17:36:21,146-INFO: iter: 4240, lr: 0.000050, 'loss': '3.484643', time: 0.063, eta: 0:16:27 2020-04-24 17:36:22,407-INFO: iter: 4260, lr: 0.000050, 'loss': '3.560898', time: 0.063, eta: 0:16:37 2020-04-24 17:36:23,661-INFO: iter: 4280, lr: 0.000050, 'loss': '3.542098', time: 0.063, eta: 0:16:26 2020-04-24 17:36:24,937-INFO: iter: 4300, lr: 0.000050, 'loss': '3.348787', time: 0.064, eta: 0:16:42 2020-04-24 17:36:26,200-INFO: iter: 4320, lr: 0.000050, 'loss': '3.510291', time: 0.063, eta: 0:16:26 2020-04-24 17:36:27,472-INFO: iter: 4340, lr: 0.000050, 'loss': '3.666212', time: 0.064, eta: 0:16:35 2020-04-24 17:36:28,713-INFO: iter: 4360, lr: 0.000050, 'loss': '3.797819', time: 0.062, eta: 0:16:08 2020-04-24 17:36:29,974-INFO: iter: 4380, lr: 0.000050, 'loss': '3.945305', time: 0.063, eta: 0:16:29 2020-04-24 17:36:31,235-INFO: iter: 4400, lr: 0.000050, 'loss': '3.535756', time: 0.063, eta: 0:16:18 2020-04-24 17:36:32,481-INFO: iter: 4420, lr: 0.000050, 'loss': '3.490065', time: 0.063, eta: 0:16:16 2020-04-24 17:36:33,730-INFO: iter: 4440, lr: 0.000050, 'loss': '3.691013', time: 0.062, eta: 0:16:05 2020-04-24 17:36:34,966-INFO: iter: 4460, lr: 0.000050, 'loss': '3.553645', time: 0.062, eta: 0:16:05 2020-04-24 17:36:36,225-INFO: iter: 4480, lr: 0.000050, 'loss': '3.839829', time: 0.063, eta: 0:16:14 2020-04-24 17:36:37,511-INFO: iter: 4500, lr: 0.000050, 'loss': '3.846769', time: 0.064, eta: 0:16:34 2020-04-24 17:36:37,511-INFO: Save model to output/yolov3_darknet_voc/4500. 2020-04-24 17:36:43,267-INFO: Test iter 0 2020-04-24 17:36:47,838-INFO: Test finish iter 50 2020-04-24 17:36:47,838-INFO: Total number of images: 386, inference time: 81.4749819927355 fps. 2020-04-24 17:36:47,838-INFO: Start evaluate... 2020-04-24 17:36:47,858-INFO: Accumulating evaluatation results... 2020-04-24 17:36:47,860-INFO: mAP(0.50, 11point) = 0.07 2020-04-24 17:36:47,860-INFO: Best test box ap: 1.7039429287573509, in iter: 1000 2020-04-24 17:36:49,136-INFO: iter: 4520, lr: 0.000050, 'loss': '3.163689', time: 0.582, eta: 2:30:04 2020-04-24 17:36:50,392-INFO: iter: 4540, lr: 0.000050, 'loss': '3.469370', time: 0.063, eta: 0:16:08 2020-04-24 17:36:51,645-INFO: iter: 4560, lr: 0.000050, 'loss': '3.841788', time: 0.062, eta: 0:16:03 2020-04-24 17:36:52,881-INFO: iter: 4580, lr: 0.000050, 'loss': '3.766765', time: 0.062, eta: 0:15:51 2020-04-24 17:36:54,117-INFO: iter: 4600, lr: 0.000050, 'loss': '3.452003', time: 0.062, eta: 0:15:57 2020-04-24 17:36:55,350-INFO: iter: 4620, lr: 0.000050, 'loss': '3.419397', time: 0.062, eta: 0:15:46 2020-04-24 17:36:56,582-INFO: iter: 4640, lr: 0.000050, 'loss': '3.332407', time: 0.062, eta: 0:15:47 2020-04-24 17:36:57,827-INFO: iter: 4660, lr: 0.000050, 'loss': '3.428831', time: 0.062, eta: 0:15:54 2020-04-24 17:36:59,085-INFO: iter: 4680, lr: 0.000050, 'loss': '4.268382', time: 0.063, eta: 0:16:03 2020-04-24 17:37:00,391-INFO: iter: 4700, lr: 0.000050, 'loss': '3.485666', time: 0.065, eta: 0:16:38 2020-04-24 17:37:01,642-INFO: iter: 4720, lr: 0.000050, 'loss': '3.760272', time: 0.063, eta: 0:15:56 2020-04-24 17:37:02,931-INFO: iter: 4740, lr: 0.000050, 'loss': '3.887499', time: 0.064, eta: 0:16:24 2020-04-24 17:37:04,195-INFO: iter: 4760, lr: 0.000050, 'loss': '3.782166', time: 0.063, eta: 0:16:03 2020-04-24 17:37:05,472-INFO: iter: 4780, lr: 0.000050, 'loss': '3.811396', time: 0.064, eta: 0:16:09 2020-04-24 17:37:06,764-INFO: iter: 4800, lr: 0.000050, 'loss': '3.546153', time: 0.065, eta: 0:16:21 2020-04-24 17:37:08,017-INFO: iter: 4820, lr: 0.000050, 'loss': '3.723100', time: 0.063, eta: 0:15:54 2020-04-24 17:37:09,269-INFO: iter: 4840, lr: 0.000050, 'loss': '3.450723', time: 0.063, eta: 0:15:49 2020-04-24 17:37:10,510-INFO: iter: 4860, lr: 0.000050, 'loss': '3.723860', time: 0.062, eta: 0:15:38 2020-04-24 17:37:11,760-INFO: iter: 4880, lr: 0.000050, 'loss': '3.553896', time: 0.062, eta: 0:15:43 2020-04-24 17:37:13,089-INFO: iter: 4900, lr: 0.000050, 'loss': '3.351804', time: 0.066, eta: 0:16:42 2020-04-24 17:37:14,335-INFO: iter: 4920, lr: 0.000050, 'loss': '3.891120', time: 0.062, eta: 0:15:42 2020-04-24 17:37:15,597-INFO: iter: 4940, lr: 0.000050, 'loss': '3.428214', time: 0.063, eta: 0:15:50 2020-04-24 17:37:16,864-INFO: iter: 4960, lr: 0.000050, 'loss': '3.330782', time: 0.063, eta: 0:15:51 2020-04-24 17:37:18,134-INFO: iter: 4980, lr: 0.000050, 'loss': '3.386735', time: 0.064, eta: 0:15:55 2020-04-24 17:37:19,399-INFO: iter: 5000, lr: 0.000050, 'loss': '3.567228', time: 0.063, eta: 0:15:46 2020-04-24 17:37:19,400-INFO: Save model to output/yolov3_darknet_voc/5000. 2020-04-24 17:37:25,233-INFO: Test iter 0 2020-04-24 17:37:29,840-INFO: Test finish iter 50 2020-04-24 17:37:29,840-INFO: Total number of images: 386, inference time: 81.00914311761852 fps. 2020-04-24 17:37:29,840-INFO: Start evaluate... 2020-04-24 17:37:29,858-INFO: Accumulating evaluatation results... 2020-04-24 17:37:29,859-INFO: mAP(0.50, 11point) = 0.00 2020-04-24 17:37:29,860-INFO: Best test box ap: 1.7039429287573509, in iter: 1000 2020-04-24 17:37:31,127-INFO: iter: 5020, lr: 0.000050, 'loss': '3.453389', time: 0.586, eta: 2:26:21 2020-04-24 17:37:32,479-INFO: iter: 5040, lr: 0.000050, 'loss': '3.389300', time: 0.068, eta: 0:16:51 2020-04-24 17:37:33,755-INFO: iter: 5060, lr: 0.000050, 'loss': '3.250560', time: 0.064, eta: 0:15:58 2020-04-24 17:37:35,034-INFO: iter: 5080, lr: 0.000050, 'loss': '3.315282', time: 0.064, eta: 0:15:54 2020-04-24 17:37:36,322-INFO: iter: 5100, lr: 0.000050, 'loss': '3.260192', time: 0.064, eta: 0:15:58 2020-04-24 17:37:37,625-INFO: iter: 5120, lr: 0.000050, 'loss': '3.638357', time: 0.065, eta: 0:16:01 2020-04-24 17:37:38,903-INFO: iter: 5140, lr: 0.000050, 'loss': '3.509134', time: 0.064, eta: 0:15:55 2020-04-24 17:37:40,153-INFO: iter: 5160, lr: 0.000050, 'loss': '3.396525', time: 0.063, eta: 0:15:30 2020-04-24 17:37:41,425-INFO: iter: 5180, lr: 0.000050, 'loss': '3.273350', time: 0.063, eta: 0:15:39 2020-04-24 17:37:42,682-INFO: iter: 5200, lr: 0.000050, 'loss': '3.643520', time: 0.063, eta: 0:15:29 2020-04-24 17:37:43,907-INFO: iter: 5220, lr: 0.000050, 'loss': '3.876294', time: 0.062, eta: 0:15:09 2020-04-24 17:37:45,138-INFO: iter: 5240, lr: 0.000050, 'loss': '3.493153', time: 0.062, eta: 0:15:08 2020-04-24 17:37:46,399-INFO: iter: 5260, lr: 0.000050, 'loss': '3.738557', time: 0.063, eta: 0:15:24 2020-04-24 17:37:47,682-INFO: iter: 5280, lr: 0.000050, 'loss': '3.554138', time: 0.064, eta: 0:15:46 2020-04-24 17:37:48,965-INFO: iter: 5300, lr: 0.000050, 'loss': '3.810281', time: 0.064, eta: 0:15:44 2020-04-24 17:37:50,225-INFO: iter: 5320, lr: 0.000050, 'loss': '3.253931', time: 0.063, eta: 0:15:24 2020-04-24 17:37:51,519-INFO: iter: 5340, lr: 0.000050, 'loss': '3.243005', time: 0.065, eta: 0:15:47 2020-04-24 17:37:52,781-INFO: iter: 5360, lr: 0.000050, 'loss': '3.515703', time: 0.063, eta: 0:15:25 2020-04-24 17:37:54,046-INFO: iter: 5380, lr: 0.000050, 'loss': '3.450956', time: 0.063, eta: 0:15:24 2020-04-24 17:37:55,287-INFO: iter: 5400, lr: 0.000050, 'loss': '3.525292', time: 0.062, eta: 0:15:04 2020-04-24 17:37:56,559-INFO: iter: 5420, lr: 0.000050, 'loss': '3.550826', time: 0.063, eta: 0:15:24 2020-04-24 17:37:57,841-INFO: iter: 5440, lr: 0.000050, 'loss': '3.331095', time: 0.064, eta: 0:15:37 2020-04-24 17:37:59,113-INFO: iter: 5460, lr: 0.000050, 'loss': '3.410345', time: 0.064, eta: 0:15:23 2020-04-24 17:38:00,377-INFO: iter: 5480, lr: 0.000050, 'loss': '3.535499', time: 0.063, eta: 0:15:15 2020-04-24 17:38:01,660-INFO: iter: 5500, lr: 0.000050, 'loss': '3.143191', time: 0.064, eta: 0:15:32 2020-04-24 17:38:01,660-INFO: Save model to output/yolov3_darknet_voc/5500. 2020-04-24 17:38:07,517-INFO: Test iter 0 2020-04-24 17:38:12,136-INFO: Test finish iter 50 2020-04-24 17:38:12,137-INFO: Total number of images: 365, inference time: 76.25575758203671 fps. 2020-04-24 17:38:12,137-INFO: Start evaluate... 2020-04-24 17:38:12,152-INFO: Accumulating evaluatation results... 2020-04-24 17:38:12,153-INFO: mAP(0.50, 11point) = 0.00 2020-04-24 17:38:12,153-INFO: Best test box ap: 1.7039429287573509, in iter: 1000 2020-04-24 17:38:13,401-INFO: iter: 5520, lr: 0.000050, 'loss': '3.344422', time: 0.587, eta: 2:21:41 2020-04-24 17:38:14,639-INFO: iter: 5540, lr: 0.000050, 'loss': '3.501547', time: 0.062, eta: 0:14:55 2020-04-24 17:38:15,904-INFO: iter: 5560, lr: 0.000050, 'loss': '3.503700', time: 0.063, eta: 0:15:07 2020-04-24 17:38:17,194-INFO: iter: 5580, lr: 0.000050, 'loss': '3.501959', time: 0.065, eta: 0:15:31 2020-04-24 17:38:18,445-INFO: iter: 5600, lr: 0.000050, 'loss': '3.417392', time: 0.063, eta: 0:15:02 2020-04-24 17:38:19,735-INFO: iter: 5620, lr: 0.000050, 'loss': '3.444615', time: 0.064, eta: 0:15:26 2020-04-24 17:38:21,052-INFO: iter: 5640, lr: 0.000050, 'loss': '3.577362', time: 0.066, eta: 0:15:45 2020-04-24 17:38:22,329-INFO: iter: 5660, lr: 0.000050, 'loss': '3.356668', time: 0.064, eta: 0:15:18 2020-04-24 17:38:23,619-INFO: iter: 5680, lr: 0.000050, 'loss': '3.073082', time: 0.064, eta: 0:15:23 2020-04-24 17:38:24,876-INFO: iter: 5700, lr: 0.000050, 'loss': '3.488874', time: 0.063, eta: 0:14:59 2020-04-24 17:38:26,168-INFO: iter: 5720, lr: 0.000050, 'loss': '3.532371', time: 0.065, eta: 0:15:22 2020-04-24 17:38:27,429-INFO: iter: 5740, lr: 0.000050, 'loss': '3.542585', time: 0.063, eta: 0:14:57 2020-04-24 17:38:28,711-INFO: iter: 5760, lr: 0.000050, 'loss': '3.143624', time: 0.064, eta: 0:15:15 2020-04-24 17:38:29,976-INFO: iter: 5780, lr: 0.000050, 'loss': '3.738636', time: 0.063, eta: 0:14:58 2020-04-24 17:38:31,253-INFO: iter: 5800, lr: 0.000050, 'loss': '3.627708', time: 0.064, eta: 0:15:06 2020-04-24 17:38:32,551-INFO: iter: 5820, lr: 0.000050, 'loss': '3.114335', time: 0.065, eta: 0:15:18 2020-04-24 17:38:33,854-INFO: iter: 5840, lr: 0.000050, 'loss': '3.489221', time: 0.065, eta: 0:15:24 2020-04-24 17:38:35,128-INFO: iter: 5860, lr: 0.000050, 'loss': '3.341849', time: 0.064, eta: 0:15:00 2020-04-24 17:38:36,400-INFO: iter: 5880, lr: 0.000050, 'loss': '3.928839', time: 0.064, eta: 0:14:59 2020-04-24 17:38:37,701-INFO: iter: 5900, lr: 0.000050, 'loss': '3.130453', time: 0.065, eta: 0:15:16 2020-04-24 17:38:38,956-INFO: iter: 5920, lr: 0.000050, 'loss': '4.121333', time: 0.063, eta: 0:14:44 2020-04-24 17:38:40,236-INFO: iter: 5940, lr: 0.000050, 'loss': '3.682073', time: 0.064, eta: 0:14:

指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/PaddleDetection#548
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7