places would be ommited when DataLoader is not iterable *** Check failure stack trace: ***
Created by: zachary-zheng
笔记本配置:GeForce GTX 1660Ti with Max-Q Design 显存6G Python 版本: 3.7.7 PaddleDetection: V0.4 我在跑水果的例子出现以下问题及疑问: 报错内容:
2020-09-26 23:23:06,817-INFO: If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. The Regularization[L2Decay, regularization_coeff=0.000500] in Optimizer will not take effect, and it will only be applied to other Parameters!
2020-09-26 23:23:07,418-INFO: places would be ommited when DataLoader is not iterable
2020-09-26 23:23:08,959-WARNING: C:\Users\DELL/.cache/paddle/weights\yolov3_mobilenet_v1.pdparams not found, try to load model file saved with [ save_params, save_persistables, save_vars ]
2020-09-26 23:23:09,331-WARNING: variable yolo_output.1.conv.weights not used
2020-09-26 23:23:09,331-WARNING: variable yolo_output.2.conv.weights not used
2020-09-26 23:23:09,331-WARNING: variable yolo_output.0.conv.weights not used
2020-09-26 23:23:09,331-WARNING: variable yolo_output.1.conv.bias not used
2020-09-26 23:23:09,331-WARNING: variable yolo_output.0.conv.bias not used
2020-09-26 23:23:09,331-WARNING: variable yolo_output.2.conv.bias not used
2020-09-26 23:23:09,534-INFO: places would be ommited when DataLoader is not iterable
*** Check failure stack trace: ***
Process finished with exit code -1073740791 (0xC0000409)
yml文件为PaddleDetection 内的yolov3_mobilenet_v1_fruit.yml配置:
architecture: YOLOv3
use_gpu: true
max_iters: 20000
log_smooth_window: 20
save_dir: output
snapshot_iter: 200
metric: VOC
map_type: 11point
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
weights: output/yolov3_mobilenet_v1_fruit/best_model
num_classes: 3
finetune_exclude_pretrained_params: ['yolo_output']
use_fine_grained_loss: false
YOLOv3:
backbone: MobileNet
yolo_head: YOLOv3Head
MobileNet:
norm_type: sync_bn
norm_decay: 0.
conv_group_scale: 1
with_extra_blocks: false
YOLOv3Head:
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
norm_decay: 0.
yolo_loss: YOLOv3Loss
nms:
background_label: -1
keep_top_k: 100
nms_threshold: 0.45
nms_top_k: 1000
normalized: false
score_threshold: 0.01
YOLOv3Loss:
# batch_size here is only used for fine grained loss, not used
# for training batch_size setting, training batch_size setting
# is in configs/yolov3_reader.yml TrainReader.batch_size, batch
# size here should be set as same value as TrainReader.batch_size
batch_size: 8
ignore_thresh: 0.7
label_smooth: true
LearningRate:
base_lr: 0.00001
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones:
- 15000
- 18000
- !LinearWarmup
start_factor: 0.
steps: 100
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2
_READER_: 'yolov3_reader.yml'
# will merge TrainReader into yolov3_reader.yml
TrainReader:
inputs_def:
image_shape: [3, 608, 608]
fields: ['image', 'gt_bbox', 'gt_class', 'gt_score']
num_max_boxes: 50
dataset:
!VOCDataSet
dataset_dir: ../dataset/fruit
anno_path: train.txt
with_background: false
use_default_label: false
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !NormalizeBox {}
- !ExpandImage
max_ratio: 4.0
mean: [123.675, 116.28, 103.53]
prob: 0.5
- !RandomInterpImage
max_size: 0
target_size: 608
- !RandomFlipImage
is_normalized: true
prob: 0.5
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: true
is_channel_first: false
- !PadBox
num_max_boxes: 50
- !BboxXYXY2XYWH {}
batch_transforms:
- !RandomShape
sizes: [608]
- !Permute
channel_first: true
to_bgr: false
batch_size: 1
shuffle: true
mixup_epoch: -1
EvalReader:
batch_size: 1
inputs_def:
image_shape: [3, 608, 608]
fields: ['image', 'im_size', 'im_id', 'gt_bbox', 'gt_class', 'is_difficult']
num_max_boxes: 50
dataset:
!VOCDataSet
dataset_dir: ../dataset/fruit
anno_path: val.txt
use_default_label: false
with_background: false
TestReader:
batch_size: 1
dataset:
!ImageFolder
anno_path: ../dataset/fruit/label_list.txt
use_default_label: false
with_background: false
请问 (1)我用pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar,为什么会报错yolov3_mobilenet_v1.pdparams not found, 去哪里搞到.pdparams文件呢? (2)为什么提示yolo_output.1.conv.weights not used? (3)*** Check failure stack trace: ***这是显存不够吗? batch_size=1 了还有其他方法吗?