Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • PaddleDetection
  • Issue
  • #1308

P
PaddleDetection
  • 项目概览

PaddlePaddle / PaddleDetection
大约 2 年 前同步成功

通知 708
Star 11112
Fork 2696
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 184
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 40
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
PaddleDetection
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 184
    • Issue 184
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 40
    • 合并请求 40
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 8月 28, 2020 by saxon_zh@saxon_zhGuest

`ppyolo_r18vd`模型训练结束时报错

Created by: dklinzh

环境:

  • PaddlePaddle 1.8.4.post107
  • PaddleDetection release/0.4 9e388947
  • GPU单卡8G, 内存32G
  • Python 3.7.3

错误日志:

2020-08-27 22:15:53,972-INFO: Save model to ../PaddleDetection_Output/model/ppyolo_r18vd_plate/T0/ppyolo_r18vd_plate/model_final. 2020-08-27 22:15:54,901-INFO: Test iter 0 2020-08-27 22:15:56,121-INFO: Test finish iter 26 2020-08-27 22:15:56,121-INFO: Total number of images: 202, inference time: 157.2117341547254 fps. 2020-08-27 22:15:56,121-INFO: Start evaluate... 2020-08-27 22:15:56,144-INFO: Accumulating evaluatation results... 2020-08-27 22:15:56,145-INFO: mAP(0.50, 11point) = 99.13 2020-08-27 22:15:56,145-INFO: Best test box ap: 99.23065809434371, in iter: 25000 terminate called without an active exception W0827 22:15:56.547019 3768 init.cc:226] Warning: PaddlePaddle catches a failure signal, it may not work properly W0827 22:15:56.547036 3768 init.cc:228] You could check whether you killed PaddlePaddle thread/process accidentally or report the case to PaddlePaddle W0827 22:15:56.547042 3768 init.cc:231] The detail failure signal is:

W0827 22:15:56.547049 3768 init.cc:234] *** Aborted at 1598537756 (unix time) try "date -d @1598537756" if you are using GNU date *** W0827 22:15:56.548934 3768 init.cc:234] PC: @ 0x0 (unknown) W0827 22:15:56.548995 3768 init.cc:234] *** SIGABRT (@0x3e800000aff) received by PID 2815 (TID 0x7f9e4d7fe700) from PID 2815; stack trace: *** W0827 22:15:56.550269 3768 init.cc:234] @ 0x7fa16a0ce730 (unknown) W0827 22:15:56.551038 3768 init.cc:234] @ 0x7fa169d497bb gsignal W0827 22:15:56.551915 3768 init.cc:234] @ 0x7fa169d34535 abort W0827 22:15:56.552793 3768 init.cc:234] @ 0x7fa15205f983 (unknown) W0827 22:15:56.553651 3768 init.cc:234] @ 0x7fa1520658c6 (unknown) W0827 22:15:56.554262 3768 init.cc:234] @ 0x7fa152065901 std::terminate() W0827 22:15:56.554885 3768 init.cc:234] @ 0x7fa152065324 __gxx_personality_v0 W0827 22:15:56.555639 3768 init.cc:234] @ 0x7fa166832f28 (unknown) W0827 22:15:56.556443 3768 init.cc:234] @ 0x7fa16683351c _Unwind_ForcedUnwind W0827 22:15:56.557286 3768 init.cc:234] @ 0x7fa16a0cd0a0 __GI___pthread_unwind W0827 22:15:56.558120 3768 init.cc:234] @ 0x7fa16a0c51f5 __pthread_exit W0827 22:15:56.558395 3768 init.cc:234] @ 0x62e585 PyThread_exit_thread W0827 22:15:56.558507 3768 init.cc:234] @ 0x54e368 PyEval_RestoreThread W0827 22:15:56.559154 3768 init.cc:234] @ 0x7fa1302dd5d5 (unknown) W0827 22:15:56.559283 3768 init.cc:234] @ 0x5d7d54 _PyMethodDef_RawFastCallKeywords W0827 22:15:56.559430 3768 init.cc:234] @ 0x54b780 (unknown) W0827 22:15:56.559494 3768 init.cc:234] @ 0x55286a _PyEval_EvalFrameDefault W0827 22:15:56.559576 3768 init.cc:234] @ 0x54c112 _PyEval_EvalCodeWithName W0827 22:15:56.559655 3768 init.cc:234] @ 0x5d9bbe _PyFunction_FastCallDict W0827 22:15:56.559773 3768 init.cc:234] @ 0x58f07b (unknown) W0827 22:15:56.559850 3768 init.cc:234] @ 0x5d94db _PyObject_FastCallKeywords W0827 22:15:56.559898 3768 init.cc:234] @ 0x552ae8 _PyEval_EvalFrameDefault W0827 22:15:56.559947 3768 init.cc:234] @ 0x5d99f6 _PyFunction_FastCallDict W0827 22:15:56.560061 3768 init.cc:234] @ 0x58f07b (unknown) W0827 22:15:56.560139 3768 init.cc:234] @ 0x5d94db _PyObject_FastCallKeywords W0827 22:15:56.560256 3768 init.cc:234] @ 0x54b811 (unknown) W0827 22:15:56.560314 3768 init.cc:234] @ 0x55286a _PyEval_EvalFrameDefault W0827 22:15:56.560420 3768 init.cc:234] @ 0x54c112 _PyEval_EvalCodeWithName W0827 22:15:56.560487 3768 init.cc:234] @ 0x5d9bbe _PyFunction_FastCallDict W0827 22:15:56.560600 3768 init.cc:234] @ 0x4d9fb2 (unknown) W0827 22:15:56.560714 3768 init.cc:234] @ 0x5dc086 PyObject_Call W0827 22:15:56.560829 3768 init.cc:234] @ 0x6233d6 (unknown) Aborted

使用VOC格式的自定义数据集训练, yml配置如下:

architecture: YOLOv3
use_gpu: true
max_iters: 100000
log_smooth_window: 20
log_iter: 20
snapshot_iter: 1000
metric: VOC
map_type: 11point # integral
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/ppyolo_r18vd.pdparams
weights: ../PaddleDetection_Output/model/ppyolo_r18vd_plate/T0/ppyolo_r18vd_plate/best_model
save_dir: ../PaddleDetection_Output/model/ppyolo_r18vd_plate/T0
num_classes: 1
use_fine_grained_loss: true
use_ema: true
ema_decay: 0.9998

YOLOv3:
  backbone: ResNet
  yolo_head: YOLOv3Head
  use_fine_grained_loss: true

ResNet:
  norm_type: sync_bn
  freeze_at: 0
  freeze_norm: false
  norm_decay: 0.
  depth: 18
  feature_maps: [4, 5]
  variant: d

YOLOv3Head:
  anchor_masks: [[3, 4, 5], [0, 1, 2]]
  anchors: [[10, 14], [23, 27], [37, 58],
            [81, 82], [135, 169], [344, 319]]
  norm_decay: 0.
  conv_block_num: 0
  scale_x_y: 1.05
  yolo_loss: YOLOv3Loss
  nms: MatrixNMS
  drop_block: true

YOLOv3Loss:
  batch_size: 8
  ignore_thresh: 0.7
  scale_x_y: 1.05
  label_smooth: false
  use_fine_grained_loss: true
  iou_loss: IouLoss

IouLoss:
  loss_weight: 2.5
  max_height: 608
  max_width: 608

MatrixNMS:
    background_label: -1
    keep_top_k: 100
    normalized: false
    score_threshold: 0.01
    post_threshold: 0.01

LearningRate:
  base_lr: 0.00025
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 60000
    - 80000
  - !LinearWarmup
    start_factor: 0.
    steps: 1600

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

_READER_: 'ppyolo_reader.yml'
TrainReader:
  inputs_def:
    fields: ['image', 'gt_bbox', 'gt_class', 'gt_score']
    num_max_boxes: 50
  dataset:
    !VOCDataSet
    dataset_dir: ../PaddleDetection_DataSet/plate_new
    anno_path: train.txt
    use_default_label: false
    with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
      with_mixup: True
    - !MixupImage
      alpha: 1.5
      beta: 1.5
    - !ColorDistort {}
    - !RandomExpand
      fill_value: [123.675, 116.28, 103.53]
    - !RandomCrop {}
    - !RandomFlipImage
      is_normalized: false
    - !NormalizeBox {}
    - !PadBox
      num_max_boxes: 50
    - !BboxXYXY2XYWH {}
  batch_transforms:
  - !RandomShape
    sizes: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608]
    random_inter: True
  - !NormalizeImage
    mean: [0.485, 0.456, 0.406]
    std: [0.229, 0.224, 0.225]
    is_scale: True
    is_channel_first: false
  - !Permute
    to_bgr: false
    channel_first: True
  # Gt2YoloTarget is only used when use_fine_grained_loss set as true,
  # this operator will be deleted automatically if use_fine_grained_loss
  # is set as false
  - !Gt2YoloTarget
    anchor_masks: [[3, 4, 5], [0, 1, 2]]
    anchors: [[10, 14], [23, 27], [37, 58],
              [81, 82], [135, 169], [344, 319]]
    downsample_ratios: [32, 16]
  batch_size: 8
  shuffle: true
  mixup_epoch: 500
  drop_last: true
  worker_num: 16
  bufsize: 8
  use_process: true

EvalReader:
  inputs_def:
    fields: ['image', 'im_size', 'im_id', 'gt_bbox', 'gt_class', 'is_difficult']
    num_max_boxes: 50
  dataset:
    !VOCDataSet
    dataset_dir: ../PaddleDetection_DataSet/plate_new
    anno_path: val.txt
    use_default_label: false
    with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
    - !ResizeImage
      target_size: 608
      interp: 2
    - !NormalizeImage
      mean: [0.485, 0.456, 0.406]
      std: [0.229, 0.224, 0.225]
      is_scale: True
      is_channel_first: false
    - !PadBox
      num_max_boxes: 50
    - !Permute
      to_bgr: false
      channel_first: True
  batch_size: 8
  drop_empty: false
  worker_num: 8
  bufsize: 4

TestReader:
  inputs_def:
    image_shape: [3, 608, 608]
    fields: ['image', 'im_size', 'im_id']
  dataset:
    !ImageFolder
    anno_path: ../PaddleDetection_DataSet/plate_new/label_list.txt
    use_default_label: false
    with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
    - !ResizeImage
      target_size: 608
      interp: 2
    - !NormalizeImage
      mean: [0.485, 0.456, 0.406]
      std: [0.229, 0.224, 0.225]
      is_scale: True
      is_channel_first: false
    - !Permute
      to_bgr: false
      channel_first: True
  batch_size: 1
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/PaddleDetection#1308
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7