Skip to content

  • 体验新版
    • 正在加载...
  • 登录
  • PaddlePaddle
  • PaddleDetection
  • Issue
  • #1298

P
PaddleDetection
  • 项目概览

PaddlePaddle / PaddleDetection
大约 2 年 前同步成功

通知 708
Star 11112
Fork 2696
  • 代码
    • 文件
    • 提交
    • 分支
    • Tags
    • 贡献者
    • 分支图
    • Diff
  • Issue 184
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 40
  • Wiki 0
    • Wiki
  • 分析
    • 仓库
    • DevOps
  • 项目成员
  • Pages
P
PaddleDetection
  • 项目概览
    • 项目概览
    • 详情
    • 发布
  • 仓库
    • 仓库
    • 文件
    • 提交
    • 分支
    • 标签
    • 贡献者
    • 分支图
    • 比较
  • Issue 184
    • Issue 184
    • 列表
    • 看板
    • 标记
    • 里程碑
  • 合并请求 40
    • 合并请求 40
  • Pages
  • 分析
    • 分析
    • 仓库分析
    • DevOps
  • Wiki 0
    • Wiki
  • 成员
    • 成员
  • 收起侧边栏
  • 动态
  • 分支图
  • 创建新Issue
  • 提交
  • Issue看板
已关闭
开放中
Opened 8月 27, 2020 by saxon_zh@saxon_zhGuest

pp_yolo4训练自定义数据集nan

Created by: wchange

环境:hub.baidubce.com/paddlepaddle/paddle:1.8.3-gpu-cuda10.0-cudnn7 GPU:4卡 P40

2020-08-27 06:04:11,335-INFO: If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. The Regularization[L2Decay, regularization_coeff=0.000500] in Optimizer will not take effect, and it will only be applied to other Parameters!
2020-08-27 06:04:17,251-INFO: places would be ommited when DataLoader is not iterable
W0827 06:04:17.349093 18186 device_context.cc:252] Please NOTE: device: 0, CUDA Capability: 61, Driver API Version: 10.2, Runtime API Version: 10.0
W0827 06:04:17.359207 18186 device_context.cc:260] device: 0, cuDNN Version: 7.6.
2020-08-27 06:04:20,479-WARNING: /root/.cache/paddle/weights/ResNet50_vd_ssld_pretrained.pdparams not found, try to load model file saved with [ save_params, save_persistables, save_vars ]
/usr/local/lib/python3.7/site-packages/paddle/fluid/io.py:1998: UserWarning: This list is not set, Because of Paramerter not found in program. There are: fc_0.b_0 fc_0.w_0
  format(" ".join(unused_para_list)))
2020-08-27 06:04:21,235-WARNING: Found an invalid bbox in annotations: im_id: 53, area: 0.0 x1: 0, y1: 195, x2: 0, y2: 360.
2020-08-27 06:04:21,246-INFO: places would be ommited when DataLoader is not iterable
I0827 06:04:30.062239 18186 build_strategy.cc:361] set enable_sequential_execution:1
W0827 06:04:31.650740 18186 fuse_all_reduce_op_pass.cc:74] Find all_reduce operators: 240. To make the speed faster, some all_reduce ops are fused during training, after fusion, the number of all_reduce ops is 171.
2020-08-27 06:05:15,815-INFO: iter: 0, lr: 0.000000, 'loss_xy': '49.234890', 'loss_wh': '151.551819', 'loss_obj': '11701.962891', 'loss_cls': '26.566391', 'loss_iou': '183.181076', 'loss_iou_aware': '487.398712', 'loss': '12599.894531', time: 0.000, eta: 0:00:04
2020-08-27 06:08:34,039-INFO: iter: 100, lr: 0.000125, 'loss_xy': '36.615501', 'loss_wh': '54.858246', 'loss_obj': '268.272827', 'loss_cls': '11.544251', 'loss_iou': '137.742783', 'loss_iou_aware': '23.605310', 'loss': '536.883667', time: 2.518, eta: 1 day, 10:54:26
2020-08-27 06:12:04,756-INFO: iter: 200, lr: 0.000250, 'loss_xy': '35.625519', 'loss_wh': '53.374252', 'loss_obj': '235.519302', 'loss_cls': '3.245854', 'loss_iou': '137.041992', 'loss_iou_aware': '5.009554', 'loss': '474.245117', time: 2.095, eta: 1 day, 4:58:59
2020-08-27 06:15:15,642-INFO: iter: 300, lr: 0.000375, 'loss_xy': '34.211246', 'loss_wh': '50.140015', 'loss_obj': '210.656647', 'loss_cls': '1.414299', 'loss_iou': '130.542068', 'loss_iou_aware': '1.741558', 'loss': '424.454224', time: 1.899, eta: 1 day, 2:13:03
2020-08-27 06:18:34,700-INFO: iter: 400, lr: 0.000500, 'loss_xy': '34.201408', 'loss_wh': '49.520100', 'loss_obj': '205.470718', 'loss_cls': '0.897171', 'loss_iou': '131.437500', 'loss_iou_aware': '0.839541', 'loss': '421.289490', time: 2.013, eta: 1 day, 3:43:53
2020-08-27 06:21:53,043-INFO: iter: 500, lr: 0.000625, 'loss_xy': '33.984039', 'loss_wh': '52.070057', 'loss_obj': '206.255768', 'loss_cls': '0.629900', 'loss_iou': '129.637939', 'loss_iou_aware': '0.666387', 'loss': '420.665039', time: 1.976, eta: 1 day, 3:10:18
2020-08-27 06:25:13,840-INFO: iter: 600, lr: 0.000750, 'loss_xy': '33.495964', 'loss_wh': '48.441265', 'loss_obj': '199.321869', 'loss_cls': '0.532362', 'loss_iou': '128.148361', 'loss_iou_aware': '0.585110', 'loss': '417.723999', time: 1.982, eta: 1 day, 3:11:29
2020-08-27 06:28:34,505-INFO: iter: 700, lr: 0.000875, 'loss_xy': 'nan', 'loss_wh': 'nan', 'loss_obj': 'nan', 'loss_cls': 'nan', 'loss_iou': 'nan', 'loss_iou_aware': 'nan', 'loss': 'nan', time: 2.032, eta: 1 day, 3:49:55

configs/ppyolo/ppyolo_2x_gf2.yml

architecture: YOLOv3
use_gpu: true
max_iters: 50000
log_smooth_window: 100
log_iter: 100
save_dir: output
snapshot_iter: 10000
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar
weights: output/ppyolo/model_final
num_classes: 1
use_fine_grained_loss: true
use_ema: true
ema_decay: 0.9998

YOLOv3:
  backbone: ResNet
  yolo_head: YOLOv3Head
  use_fine_grained_loss: true

ResNet:
  norm_type: sync_bn
  freeze_at: 0
  freeze_norm: false
  norm_decay: 0.
  depth: 50
  feature_maps: [3, 4, 5]
  variant: d
  dcn_v2_stages: [5]

YOLOv3Head:
  anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
  anchors: [[10, 13], [16, 30], [33, 23],
            [30, 61], [62, 45], [59, 119],
            [116, 90], [156, 198], [373, 326]]
  norm_decay: 0.
  coord_conv: true
  iou_aware: true
  iou_aware_factor: 0.4
  scale_x_y: 1.05
  spp: true
  yolo_loss: YOLOv3Loss
  nms: MatrixNMS
  drop_block: true

YOLOv3Loss:
  batch_size: 4
  ignore_thresh: 0.7
  scale_x_y: 1.05
  label_smooth: false
  use_fine_grained_loss: true
  iou_loss: IouLoss
  iou_aware_loss: IouAwareLoss

IouLoss:
  loss_weight: 2.5
  max_height: 608
  max_width: 608

IouAwareLoss:
  loss_weight: 1.0
  max_height: 608
  max_width: 608

MatrixNMS:
    background_label: -1
    keep_top_k: 100
    normalized: false
    score_threshold: 0.01
    post_threshold: 0.01

LearningRate:
  base_lr: 0.005
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones:
    - 400000
    - 450000
  - !LinearWarmup
    start_factor: 0.
    steps: 4000

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0005
    type: L2

_READER_: 'ppyolo_reader_gf2.yml'

configs/ppyolo/ppyolo_reader_gf2.yml

TrainReader:
  inputs_def:
    fields: ['image', 'gt_bbox', 'gt_class', 'gt_score']
    num_max_boxes: 100
  dataset:
    !COCODataSet
      image_dir: train
      anno_path: annotations/train.json
      dataset_dir: dataset/gf2
      with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
      with_mixup: True
    - !MixupImage
      alpha: 1.5
      beta: 1.5
    - !ColorDistort {}
    - !RandomExpand
      fill_value: [123.675, 116.28, 103.53]
    - !RandomCrop {}
    - !RandomFlipImage
      is_normalized: false
    - !NormalizeBox {}
    - !PadBox
      num_max_boxes: 100
    - !BboxXYXY2XYWH {}
  batch_transforms:
  - !RandomShape
    sizes: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608]
    random_inter: True
  - !NormalizeImage
    mean: [0.485, 0.456, 0.406]
    std: [0.229, 0.224, 0.225]
    is_scale: True
    is_channel_first: false
  - !Permute
    to_bgr: false
    channel_first: True
  # Gt2YoloTarget is only used when use_fine_grained_loss set as true,
  # this operator will be deleted automatically if use_fine_grained_loss
  # is set as false
  - !Gt2YoloTarget
    anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
    anchors: [[10, 13], [16, 30], [33, 23],
              [30, 61], [62, 45], [59, 119],
              [116, 90], [156, 198], [373, 326]]
    downsample_ratios: [32, 16, 8]
  batch_size: 4
  shuffle: true
  mixup_epoch: 25000
  drop_last: true
  worker_num: 8
  bufsize: 1
  use_process: false

EvalReader:
  inputs_def:
    fields: ['image', 'im_size', 'im_id']
    num_max_boxes: 100
  dataset:
    !COCODataSet
      image_dir: val
      anno_path: annotations/val.json
      dataset_dir: dataset/gf2
      with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
    - !ResizeImage
      target_size: 608
      interp: 2
    - !NormalizeImage
      mean: [0.485, 0.456, 0.406]
      std: [0.229, 0.224, 0.225]
      is_scale: True
      is_channel_first: false
    - !PadBox
      num_max_boxes: 100
    - !Permute
      to_bgr: false
      channel_first: True
  batch_size: 4
  drop_empty: false
  worker_num: 8
  bufsize: 1

TestReader:
  inputs_def:
    image_shape: [3, 608, 608]
    fields: ['image', 'im_size', 'im_id']
  dataset:
    !ImageFolder
      anno_path: annotations/instances_val2017.json
      with_background: false
  sample_transforms:
    - !DecodeImage
      to_rgb: True
    - !ResizeImage
      target_size: 608
      interp: 2
    - !NormalizeImage
      mean: [0.485, 0.456, 0.406]
      std: [0.229, 0.224, 0.225]
      is_scale: True
      is_channel_first: false
    - !Permute
      to_bgr: false
      channel_first: True
  batch_size: 1
指派人
分配到
无
里程碑
无
分配里程碑
工时统计
无
截止日期
无
标识: paddlepaddle/PaddleDetection#1298
渝ICP备2023009037号

京公网安备11010502055752号

网络110报警服务 Powered by GitLab CE v13.7
开源知识
Git 入门 Pro Git 电子书 在线学 Git
Markdown 基础入门 IT 技术知识开源图谱
帮助
使用手册 反馈建议 博客
《GitCode 隐私声明》 《GitCode 服务条款》 关于GitCode
Powered by GitLab CE v13.7