pp_yolo4自定义数据集训练报错
Created by: wchange
启动命令:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python3.7 tools/train.py -c configs/ppyolo/ppyolo_2x_gf2.yml --eval
日志:
2020-08-26 02:15:01,572-INFO: If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. The Regularization[L2Decay, regularization_coeff=0.000500] in Optimizer will not take effect, and it will only be applied to other Parameters!
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
2020-08-26 02:15:07,757-INFO: places would be ommited when DataLoader is not iterable
W0826 02:15:08.004554 15971 device_context.cc:252] Please NOTE: device: 0, CUDA Capability: 61, Driver API Version: 10.2, Runtime API Version: 10.0
W0826 02:15:08.022433 15971 device_context.cc:260] device: 0, cuDNN Version: 7.6.
2020-08-26 02:15:12,193-WARNING: /root/.cache/paddle/weights/ResNet50_vd_ssld_pretrained.pdparams not found, try to load model file saved with [ save_params, save_persistables, save_vars ]
/usr/local/lib/python3.7/site-packages/paddle/fluid/io.py:1998: UserWarning: This list is not set, Because of Paramerter not found in program. There are: fc_0.b_0 fc_0.w_0
format(" ".join(unused_para_list)))
loading annotations into memory...
Done (t=0.04s)
creating index...
index created!
2020-08-26 02:15:13,240-WARNING: Found an invalid bbox in annotations: im_id: 53, area: 0.0 x1: 0, y1: 195, x2: 0, y2: 360.
W0826 02:15:31.991529 15971 init.cc:226] Warning: PaddlePaddle catches a failure signal, it may not work properly
W0826 02:15:31.991603 15971 init.cc:228] You could check whether you killed PaddlePaddle thread/process accidentally or report the case to PaddlePaddle
W0826 02:15:31.991616 15971 init.cc:231] The detail failure signal is:
W0826 02:15:31.991628 15971 init.cc:234] *** Aborted at 1598408131 (unix time) try "date -d @1598408131" if you are using GNU date ***
W0826 02:15:31.993551 15971 init.cc:234] PC: @ 0x0 (unknown)
W0826 02:15:31.993789 15971 init.cc:234] *** SIGBUS (@0x7f1b91277000) received by PID 15971 (TID 0x7f1dcde7e700) from PID 18446744071849865216; stack trace: ***
W0826 02:15:31.995285 15971 init.cc:234] @ 0x7f1dcd506390 (unknown)
W0826 02:15:31.996726 15971 init.cc:234] @ 0x7f1dcd29daf8 (unknown)
W0826 02:15:31.997678 15971 init.cc:234] @ 0x7f1d87192e40 ffi_call_unix64
W0826 02:15:31.998585 15971 init.cc:234] @ 0x7f1d871928ab ffi_call
W0826 02:15:31.999513 15971 init.cc:234] @ 0x7f1d873a6f4f _ctypes_callproc
W0826 02:15:32.000423 15971 init.cc:234] @ 0x7f1d8739dca3 PyCFuncPtr_call
W0826 02:15:32.002307 15971 init.cc:234] @ 0x7f1dcd7ac024 _PyObject_FastCallKeywords
W0826 02:15:32.003989 15971 init.cc:234] @ 0x7f1dcd7810db _PyEval_EvalFrameDefault
W0826 02:15:32.005344 15971 init.cc:234] @ 0x7f1dcd77a8c0 function_code_fastcall
W0826 02:15:32.006947 15971 init.cc:234] @ 0x7f1dcd782ae0 _PyEval_EvalFrameDefault
W0826 02:15:32.008316 15971 init.cc:234] @ 0x7f1dcd77a8c0 function_code_fastcall
W0826 02:15:32.009905 15971 init.cc:234] @ 0x7f1dcd782ae0 _PyEval_EvalFrameDefault
W0826 02:15:32.011255 15971 init.cc:234] @ 0x7f1dcd77a8c0 function_code_fastcall
W0826 02:15:32.012847 15971 init.cc:234] @ 0x7f1dcd78306c _PyEval_EvalFrameDefault
W0826 02:15:32.014436 15971 init.cc:234] @ 0x7f1dcd8904e4 _PyEval_EvalCodeWithName
W0826 02:15:32.016003 15971 init.cc:234] @ 0x7f1dcd7ab7c0 _PyFunction_FastCallDict
W0826 02:15:32.017597 15971 init.cc:234] @ 0x7f1dcd7aca2d _PyObject_Call_Prepend
W0826 02:15:32.018985 15971 init.cc:234] @ 0x7f1dcd80fc01 slot_tp_init
W0826 02:15:32.020416 15971 init.cc:234] @ 0x7f1dcd80a2d3 type_call
W0826 02:15:32.021998 15971 init.cc:234] @ 0x7f1dcd7ac024 _PyObject_FastCallKeywords
W0826 02:15:32.023636 15971 init.cc:234] @ 0x7f1dcd77feb1 _PyEval_EvalFrameDefault
W0826 02:15:32.025221 15971 init.cc:234] @ 0x7f1dcd8904e4 _PyEval_EvalCodeWithName
W0826 02:15:32.026798 15971 init.cc:234] @ 0x7f1dcd7ab7c0 _PyFunction_FastCallDict
W0826 02:15:32.028409 15971 init.cc:234] @ 0x7f1dcd7aca2d _PyObject_Call_Prepend
W0826 02:15:32.029791 15971 init.cc:234] @ 0x7f1dcd80fc01 slot_tp_init
W0826 02:15:32.031170 15971 init.cc:234] @ 0x7f1dcd80a2d3 type_call
W0826 02:15:32.032748 15971 init.cc:234] @ 0x7f1dcd7ac024 _PyObject_FastCallKeywords
W0826 02:15:32.034349 15971 init.cc:234] @ 0x7f1dcd77feb1 _PyEval_EvalFrameDefault
W0826 02:15:32.035683 15971 init.cc:234] @ 0x7f1dcd77a8c0 function_code_fastcall
W0826 02:15:32.037284 15971 init.cc:234] @ 0x7f1dcd78306c _PyEval_EvalFrameDefault
W0826 02:15:32.038868 15971 init.cc:234] @ 0x7f1dcd8904e4 _PyEval_EvalCodeWithName
W0826 02:15:32.040446 15971 init.cc:234] @ 0x7f1dcd7ab6b7 _PyFunction_FastCallDict
Bus error
configs/ppyolo/ppyolo_2x_gf2.yml:
architecture: YOLOv3
use_gpu: true
max_iters: 500000
log_smooth_window: 100
log_iter: 100
save_dir: output
snapshot_iter: 10000
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar
weights: output/ppyolo/model_final
num_classes: 80
use_fine_grained_loss: true
use_ema: true
ema_decay: 0.9998
YOLOv3:
backbone: ResNet
yolo_head: YOLOv3Head
use_fine_grained_loss: true
ResNet:
norm_type: sync_bn
freeze_at: 0
freeze_norm: false
norm_decay: 0.
depth: 50
feature_maps: [3, 4, 5]
variant: d
dcn_v2_stages: [5]
YOLOv3Head:
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
norm_decay: 0.
coord_conv: true
iou_aware: true
iou_aware_factor: 0.4
scale_x_y: 1.05
spp: true
yolo_loss: YOLOv3Loss
nms: MatrixNMS
drop_block: true
YOLOv3Loss:
batch_size: 24
ignore_thresh: 0.7
scale_x_y: 1.05
label_smooth: false
use_fine_grained_loss: true
iou_loss: IouLoss
iou_aware_loss: IouAwareLoss
IouLoss:
loss_weight: 2.5
max_height: 608
max_width: 608
IouAwareLoss:
loss_weight: 1.0
max_height: 608
max_width: 608
MatrixNMS:
background_label: -1
keep_top_k: 100
normalized: false
score_threshold: 0.01
post_threshold: 0.01
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones:
- 400000
- 450000
- !LinearWarmup
start_factor: 0.
steps: 4000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0005
type: L2
_READER_: 'ppyolo_reader_gf2.yml'
configs/ppyolo/ppyolo_reader_gf2.yml:
TrainReader:
inputs_def:
fields: ['image', 'gt_bbox', 'gt_class', 'gt_score']
num_max_boxes: 50
dataset:
!COCODataSet
image_dir: train
anno_path: annotations/train.json
dataset_dir: dataset/gf2
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: True
with_mixup: True
- !MixupImage
alpha: 1.5
beta: 1.5
- !ColorDistort {}
- !RandomExpand
fill_value: [123.675, 116.28, 103.53]
- !RandomCrop {}
- !RandomFlipImage
is_normalized: false
- !NormalizeBox {}
- !PadBox
num_max_boxes: 50
- !BboxXYXY2XYWH {}
batch_transforms:
- !RandomShape
sizes: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608]
random_inter: True
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: True
is_channel_first: false
- !Permute
to_bgr: false
channel_first: True
# Gt2YoloTarget is only used when use_fine_grained_loss set as true,
# this operator will be deleted automatically if use_fine_grained_loss
# is set as false
- !Gt2YoloTarget
anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
anchors: [[10, 13], [16, 30], [33, 23],
[30, 61], [62, 45], [59, 119],
[116, 90], [156, 198], [373, 326]]
downsample_ratios: [32, 16, 8]
batch_size: 8
shuffle: true
mixup_epoch: 25000
drop_last: true
worker_num: 8
bufsize: 4
use_process: true
EvalReader:
inputs_def:
fields: ['image', 'im_size', 'im_id']
num_max_boxes: 50
dataset:
!COCODataSet
image_dir: val
anno_path: annotations/val.json
dataset_dir: dataset/gf2
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: True
- !ResizeImage
target_size: 608
interp: 2
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: True
is_channel_first: false
- !PadBox
num_max_boxes: 50
- !Permute
to_bgr: false
channel_first: True
batch_size: 8
drop_empty: false
worker_num: 8
bufsize: 4
TestReader:
inputs_def:
image_shape: [3, 608, 608]
fields: ['image', 'im_size', 'im_id']
dataset:
!ImageFolder
anno_path: annotations/instances_val2017.json
with_background: false
sample_transforms:
- !DecodeImage
to_rgb: True
- !ResizeImage
target_size: 608
interp: 2
- !NormalizeImage
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
is_scale: True
is_channel_first: false
- !Permute
to_bgr: false
channel_first: True
batch_size: 1