- 10 2月, 2018 2 次提交
- 26 12月, 2017 1 次提交
-
-
由 Luo Tao 提交于
-
- 20 12月, 2017 1 次提交
-
-
由 Yu Yang 提交于
-
- 08 11月, 2017 1 次提交
-
-
由 Yu Yang 提交于
* Add LoDRankTable LoD Rank Table stores the `level` of `lod` which is ordered by sequence length in descending order. It is useful when implement dynamic RNN and is shared by dynamic RNN memory, dynamic RNN slice input and dynamic RNN slice output operators. * Add skeleton for array_to_lod_tensor and lod_tensor_to_array * Add VarType::LoDTensorArray * Add PyBind of LoDTensorArray * Add InferVarType * Add first unittest * Add ut * Add unittest * Add unittest * Add unittests * update * init * add infershape for lod_tensor_to_array_op * compelete array_to_lod_tensor_op * copy data * clean code * clean code * Fix unittest data * fix bugs * fix compile error * Refine TensorToArrayOp * refactor array_to_lod_tensor * Unittest * fix bugs * Fix unittest * Fix unittest * debug * Debug * Fix unittest * clean code * refactor * use ostream * update test * fix gpu build error * make gpu test pass
-
- 05 11月, 2017 1 次提交
-
-
由 Yu Yang 提交于
It is easy to debug and test when use `stable_sort`and the time complexity is not changed.
-
- 04 11月, 2017 1 次提交
-
-
由 Yu Yang 提交于
* Add LoDRankTable LoD Rank Table stores the `level` of `lod` which is ordered by sequence length in descending order. It is useful when implement dynamic RNN and is shared by dynamic RNN memory, dynamic RNN slice input and dynamic RNN slice output operators. * Add InferVarType
-