1. 08 1月, 2019 1 次提交
  2. 09 11月, 2018 1 次提交
    • C
      Add InferVarType for some op (#14201) · 6c6e6385
      chengduo 提交于
      * add_infer_var_type
      test=develop
      
      * InferVarTypeHelper-> VarTypeInferenceHelper
      test=develop
      
      * PassInputTypeAndDTypeOnOutput
       test=develop
      
      * follow comment
      test=develop
      6c6e6385
  3. 22 10月, 2018 1 次提交
  4. 15 6月, 2018 1 次提交
  5. 11 6月, 2018 1 次提交
  6. 08 5月, 2018 1 次提交
    • Y
      Clean OpProtoAndCheckerMaker · 0e78cb69
      Yu Yang 提交于
      Do not use ctor
      
      * Reduce line of codes.
      * We can use virtual function for Maker now.
      * The implementation does not care what maker holds, it is easier to
      refactor later.
      0e78cb69
  7. 12 2月, 2018 1 次提交
  8. 10 2月, 2018 2 次提交
  9. 21 12月, 2017 1 次提交
  10. 20 12月, 2017 1 次提交
  11. 12 12月, 2017 1 次提交
    • Q
      Refine device context (#6433) · 61ec0b95
      QI JUN 提交于
      There are mainly following fixes:
      
      - take `DeviceContext` as the template parameter of math functors and OpKernel instead of `Place`
      - remove `eigen_device` interface in base class  `DeviceContext`
      - remove `GetEigenDevice` interface in `ExecutionContext` and base class `DeviceContext`
      - remove unused `platform::EigenDeviceConverter`
      - rename `REGISTER_OP_GPU_KERNEL` to `REGISTER_OP_CUDA_KERNEL`
      - rename `USE_GPU_ONLY_OP` to `USE_CUDA_ONLY_OP`
      61ec0b95
  12. 09 11月, 2017 1 次提交
    • F
      Add grad for lodtensor array ops (#5461) · b698d19b
      fengjiayi 提交于
      * Add LoDRankTable
      
      LoD Rank Table stores the `level` of `lod` which is ordered by sequence
      length in descending order. It is useful when implement dynamic RNN and
      is shared by dynamic RNN memory, dynamic RNN slice input and dynamic
      RNN slice output operators.
      
      * Add skeleton for array_to_lod_tensor and lod_tensor_to_array
      
      * Add VarType::LoDTensorArray
      
      * Add PyBind of LoDTensorArray
      
      * Add InferVarType
      
      * Add first unittest
      
      * Add ut
      
      * Add unittest
      
      * Add unittest
      
      * Add unittests
      
      * update
      
      * init
      
      * add infershape for lod_tensor_to_array_op
      
      * compelete array_to_lod_tensor_op
      
      * copy data
      
      * clean code
      
      * clean code
      
      * Fix unittest data
      
      * fix bugs
      
      * fix compile error
      
      * Refine TensorToArrayOp
      
      * refactor array_to_lod_tensor
      
      * Unittest
      
      * fix bugs
      
      * Fix unittest
      
      * Fix unittest
      
      * debug
      
      * Debug
      
      * Fix unittest
      
      * Add grad for ops
      
      * Debug
      
      * Fix a bug
      
      * fix a bug
      
      * fix a bug
      b698d19b
  13. 05 11月, 2017 1 次提交
  14. 27 10月, 2017 1 次提交
    • Y
      Gradient check use graph (#5027) · be00b0c4
      Yu Yang 提交于
      * Simplize Gradient Check
      
      * Stash
      
      * Extract apply_backward_pass to backward.py
      
      Rename apply_backward_pass to append_backward_ops
      
      * Use graph API to check gradient
      
      * Fix ci
      
      * Fix CI
      
      * Fix backward for double precision
      
      * Stash
      
      * Fix CI
      
      * Fix ci
      
      * Ignore GRU test
      
      * Ignore xe op
      
      * Fix CI
      
      * Fix softmax with xe gradient
      
      The correct equation should be IG = OG * (d_softmax_with_xe())
      
      * Fix typo
      
      * Fix merge error
      
      * Disable LRN
      be00b0c4
  15. 17 10月, 2017 1 次提交
  16. 07 10月, 2017 1 次提交
  17. 05 10月, 2017 2 次提交
  18. 03 10月, 2017 1 次提交
  19. 27 9月, 2017 1 次提交
    • Q
      Refactoring InferShape (#3946) · 9a9d50a6
      Qiao Longfei 提交于
      * init Infershape
      
      * add static InferShape interface
      
      * refactor add-op infershape
      
      * add AttrReader
      
      * add all maker's infershape
      
      * add all InferShape
      
      * add python infer api
      
      * add VarDesc interface
      
      * add python VarDesc and OpDesc interface
      
      * update python code
      
      * use infershape function to do shape inference
      
      * clean code
      
      * do not use pointer
      
      * refine code of op_proto_maker
      
      * add get_dims to VarDesc
      
      * refine the code
      
      * remove the dependency from operator to op registry
      
      * remove OpProtoAndCheckerMaker from operator
      
      * restore complete_add_op
      
      * add shape_infer_impl.h
      
      * code optimization
      
      * remove const return value
      
      * add fake BlockDesc class
      
      * optimize code
      
      * remove infer function in op_info
      
      * move InferShapeContextImpl to operator.h
      
      * optimize the interface of InferShapeContextBase
      
      * add temperary interface of new infershape
      
      * change add_op, clip_op, conv2d_op and activation_op
      
      * change all operators InferShape
      
      * fix SetDim
      
      * update cos_sim_op
      
      * update crop_op
      
      * update lookup_table_op
      
      * allocate tensor when call GetDim in InferShapeContext
      
      * update modified_huber_loss_op
      
      * update rowwise_add_op
      
      * update mean_op
      
      * update sequence_avg_pool_op
      
      * typo
      
      * remove old InferShape interface
      
      * can compile
      
      * fix or unit test
      
      * clean code
      
      * clean code
      
      * remove const before InferShapeContext
      
      * change InferenceContextBase to pointer
      
      * rename RunTime to Runtime, code clean
      9a9d50a6
  20. 21 9月, 2017 1 次提交
  21. 20 9月, 2017 1 次提交
  22. 15 9月, 2017 1 次提交
  23. 13 9月, 2017 1 次提交
  24. 05 9月, 2017 1 次提交
  25. 03 9月, 2017 1 次提交
  26. 17 8月, 2017 1 次提交
  27. 14 8月, 2017 2 次提交
  28. 12 8月, 2017 5 次提交
  29. 09 8月, 2017 1 次提交
  30. 08 8月, 2017 2 次提交
  31. 07 8月, 2017 1 次提交
  32. 05 8月, 2017 1 次提交