提交 ffafc5c9 编写于 作者: C caoying03

fix the SubNestedSequenceLayer implementations.

上级 29fa73bc
...@@ -31,16 +31,22 @@ public: ...@@ -31,16 +31,22 @@ public:
void backward(const UpdateCallback& callback = nullptr) override; void backward(const UpdateCallback& callback = nullptr) override;
private: private:
void calSelectedCols(const MatrixPtr scores, void reorganizeSeqInfo(const ICpuGpuVectorPtr seqStartPos,
const int* seqStartPos, const ICpuGpuVectorPtr subSeqStartPos);
const int* subSeqStartPos); void calSelectedCols(const MatrixPtr selectedIndices,
const std::vector<std::vector<int>> inputSeqInfo);
void buildOutputSeqInfo(); void buildOutputSeqInfo();
std::vector<int> outSeqStartInfo_; std::vector<int> outSeqStartInfo_;
std::vector<int> outSubSeqStartInfo_; std::vector<int> outSubSeqStartInfo_;
MatrixPtr scoreOverInputSeq_; // if the second input of this layer is on GPU memory, copy it to CPU memory.
MatrixPtr selIdsCpu_;
// reorganize sequenceStartPositions and subSequenceStartPositions altogether
// into a 2d vector to facilitate the sequence selection process.
std::vector<std::vector<int>> inputSeqInfo_;
// the final seleted row indices in a batch,
// rowIdx_ and selectedRows_ actually share a same memory. // rowIdx_ and selectedRows_ actually share a same memory.
IVectorPtr rowIndice_; IVectorPtr rowIndice_;
std::vector<int> selectedRows_; std::vector<int> selectedRows_;
...@@ -57,12 +63,47 @@ bool SubNestedSequenceLayer::init(const LayerMap& layerMap, ...@@ -57,12 +63,47 @@ bool SubNestedSequenceLayer::init(const LayerMap& layerMap,
return true; return true;
} }
void SubNestedSequenceLayer::calSelectedCols(const MatrixPtr selected_indices, void SubNestedSequenceLayer::reorganizeSeqInfo(
const int* seqStartPos, const ICpuGpuVectorPtr seqStartPos, const ICpuGpuVectorPtr subSeqStartPos) {
const int* subSeqStartPos) { int* seqStarts = seqStartPos->getMutableData(false);
int* subSeqStarts = subSeqStartPos->getMutableData(false);
int seqNum = seqStartPos->getSize() - 1;
inputSeqInfo_.resize(seqNum, std::vector<int>());
int seqIdx = 0;
for (size_t i = 0; i < subSeqStartPos->getSize(); ++i) {
inputSeqInfo_[seqIdx].push_back(subSeqStarts[i]);
if (subSeqStarts[i] == seqStarts[seqIdx + 1]) {
seqIdx++;
if (seqIdx == seqNum) return;
inputSeqInfo_[seqIdx].push_back(subSeqStarts[i]);
}
}
}
void SubNestedSequenceLayer::calSelectedCols(
const MatrixPtr selectedIndices,
const std::vector<std::vector<int>> inputSeqInfo) {
selectedRows_.clear(); selectedRows_.clear();
outSubSeqStartInfo_.resize(1, 0); outSubSeqStartInfo_.resize(1, 0);
outSeqStartInfo_.resize(1, 0); outSeqStartInfo_.resize(1, 0);
size_t seqNum = selectedIndices->getHeight();
size_t beamSize = selectedIndices->getWidth();
for (size_t i = 0; i < seqNum; ++i) {
for (size_t j = 0; j < beamSize; ++j) {
if (selectedIndices->getElement(i, j) == -1.) break;
int selSubSeqIdx = selectedIndices->getElement(i, j);
CHECK_GT(inputSeqInfo_[i].size() - 1, selSubSeqIdx);
size_t subSeqLen =
inputSeqInfo_[i][selSubSeqIdx + 1] - inputSeqInfo_[i][selSubSeqIdx];
for (size_t k = 0; k < subSeqLen; ++k)
selectedRows_.push_back(inputSeqInfo_[i][selSubSeqIdx] + k);
outSubSeqStartInfo_.push_back(outSubSeqStartInfo_.back() + subSeqLen);
}
outSeqStartInfo_.push_back(outSubSeqStartInfo_.back());
}
} }
void SubNestedSequenceLayer::buildOutputSeqInfo() { void SubNestedSequenceLayer::buildOutputSeqInfo() {
...@@ -83,17 +124,35 @@ void SubNestedSequenceLayer::forward(PassType passType) { ...@@ -83,17 +124,35 @@ void SubNestedSequenceLayer::forward(PassType passType) {
Layer::forward(passType); Layer::forward(passType);
const Argument& inputSeq = getInput(0); const Argument& inputSeq = getInput(0);
const MatrixPtr selected_indices = getInputValue(1);
CHECK(inputSeq.hasSubseq()) << "The first input of SubNestSequence layer " CHECK(inputSeq.hasSubseq()) << "The first input of SubNestSequence layer "
<< "must be a nested sequence."; << "must be a nested sequence.";
CHECK_EQ(inputSeq.getNumSequences(), selected_indices->getHeight()); const MatrixPtr selectedIndices = getInputValue(1);
CHECK_EQ(inputSeq.getNumSequences(), selectedIndices->getHeight());
calSelectedCols(selected_indices,
inputSeq.sequenceStartPositions->getMutableData(false), if (dynamic_cast<GpuMatrix*>(selectedIndices.get())) {
inputSeq.subSequenceStartPositions->getMutableData(false)); /*
* Currently, the second input for this layer generated by
* kmax_sequence_score_layer whose output is always stored on CPU,
* or a data_layer which canbe on GPU.
*
* If the second input is on GPU, copy it to CPU memory, because this
* input always uses very few memory, and operations related to it are
* all logic control, not computations.
*/
Matrix::resizeOrCreate(selIdsCpu_,
selectedIndices->getHeight(),
selectedIndices->getWidth(),
false /* trans */,
false /* useGpu */);
selIdsCpu_->copyFrom(*selectedIndices);
} else {
selIdsCpu_ = selectedIndices;
}
reorganizeSeqInfo(inputSeq.sequenceStartPositions,
inputSeq.subSequenceStartPositions);
calSelectedCols(selIdsCpu_, inputSeqInfo_);
resetOutput(selectedRows_.size(), getSize()); resetOutput(selectedRows_.size(), getSize());
buildOutputSeqInfo();
if (useGpu_) { if (useGpu_) {
rowIndice_ = IVector::create(selectedRows_.size(), useGpu_); rowIndice_ = IVector::create(selectedRows_.size(), useGpu_);
...@@ -103,6 +162,7 @@ void SubNestedSequenceLayer::forward(PassType passType) { ...@@ -103,6 +162,7 @@ void SubNestedSequenceLayer::forward(PassType passType) {
IVector::create(selectedRows_.data(), selectedRows_.size(), useGpu_); IVector::create(selectedRows_.data(), selectedRows_.size(), useGpu_);
} }
buildOutputSeqInfo();
getOutputValue()->selectRows(*getInputValue(0), *rowIndice_); getOutputValue()->selectRows(*getInputValue(0), *rowIndice_);
} }
......
...@@ -6097,9 +6097,11 @@ def sub_nested_seq_layer(input, selected_indices, name=None): ...@@ -6097,9 +6097,11 @@ def sub_nested_seq_layer(input, selected_indices, name=None):
The sub_nested_seq_layer accepts two inputs: the first one is a nested The sub_nested_seq_layer accepts two inputs: the first one is a nested
sequence; the second one is a set of selceted indices in the nested sequence. sequence; the second one is a set of selceted indices in the nested sequence.
Then sub_nest_seq_layer trims the first nested sequence input according to
the selected indices to form a new output.
This layer is useful in beam training.
Then sub_nest_seq_layer selects trims the first input according to the
selected indices to give a new output. This layer is used in beam training.
The example usage is: The example usage is:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册