Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ff99d941
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ff99d941
编写于
5月 02, 2018
作者:
Y
Yancey
提交者:
GitHub
5月 02, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #10164 from Yancey1989/lookup_sparse_table_op
add lookup_sparse_table_op
上级
1945b729
1a93253f
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
319 addition
and
22 deletion
+319
-22
paddle/fluid/framework/lod_tensor_test.cc
paddle/fluid/framework/lod_tensor_test.cc
+2
-2
paddle/fluid/framework/selected_rows.cc
paddle/fluid/framework/selected_rows.cc
+5
-5
paddle/fluid/framework/selected_rows.h
paddle/fluid/framework/selected_rows.h
+5
-3
paddle/fluid/framework/selected_rows_test.cc
paddle/fluid/framework/selected_rows_test.cc
+4
-4
paddle/fluid/operators/detail/serde_test.cc
paddle/fluid/operators/detail/serde_test.cc
+1
-1
paddle/fluid/operators/lookup_sparse_table_op.cc
paddle/fluid/operators/lookup_sparse_table_op.cc
+165
-0
paddle/fluid/operators/sgd_op.cc
paddle/fluid/operators/sgd_op.cc
+20
-1
paddle/fluid/operators/uniform_random_op.cc
paddle/fluid/operators/uniform_random_op.cc
+22
-2
python/paddle/fluid/distribute_transpiler.py
python/paddle/fluid/distribute_transpiler.py
+9
-4
python/paddle/fluid/tests/unittests/test_lookup_sparse_table_op.py
...ddle/fluid/tests/unittests/test_lookup_sparse_table_op.py
+86
-0
未找到文件。
paddle/fluid/framework/lod_tensor_test.cc
浏览文件 @
ff99d941
...
...
@@ -255,11 +255,11 @@ TEST(LoDTensor, RecordIO) {
std
::
unique_ptr
<
std
::
istream
>
stream_ptr
(
stream
);
recordio
::
Scanner
scanner
(
std
::
move
(
stream_ptr
));
auto
tensors
=
ReadFromRecordIO
(
&
scanner
,
ctx
);
ASSERT_EQ
(
tensors
.
size
(),
2
);
ASSERT_EQ
(
tensors
.
size
(),
static_cast
<
size_t
>
(
2
)
);
assert_tensor_ok
(
tensors
[
0
]);
assert_tensor_ok
(
tensors
[
1
]);
tensors
=
ReadFromRecordIO
(
&
scanner
,
ctx
);
ASSERT_EQ
(
tensors
.
size
(),
2
);
ASSERT_EQ
(
tensors
.
size
(),
static_cast
<
size_t
>
(
2
)
);
assert_tensor_ok
(
tensors
[
0
]);
assert_tensor_ok
(
tensors
[
1
]);
}
...
...
paddle/fluid/framework/selected_rows.cc
浏览文件 @
ff99d941
...
...
@@ -120,11 +120,11 @@ bool SelectedRows::HasKey(int64_t key) const {
:
true
;
}
std
::
vector
<
int64_t
>
SelectedRows
::
Get
(
std
::
vector
<
int64_t
>
keys
,
framework
::
Tensor
*
value
)
const
{
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
SelectedRows
::
Get
(
std
::
vector
<
int64_t
>
keys
,
framework
::
Tensor
*
value
)
const
{
PADDLE_ENFORCE
(
value
->
IsInitialized
(),
"The value tensor should be initialized."
);
std
::
vector
<
int64_t
>
non_keys
;
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
non_keys_pair
;
int64_t
value_width
=
value_
->
numel
()
/
value_
->
dims
()[
0
];
PADDLE_ENFORCE_EQ
(
value_width
,
value
->
numel
()
/
value
->
dims
()[
0
],
"output tensor should have the same shape with table "
...
...
@@ -133,7 +133,7 @@ std::vector<int64_t> SelectedRows::Get(std::vector<int64_t> keys,
for
(
size_t
i
=
0
;
i
<
keys
.
size
();
++
i
)
{
int64_t
index
=
Index
(
keys
[
i
]);
if
(
index
==
-
1
)
{
non_keys
.
push_back
(
keys
[
i
]
);
non_keys
_pair
.
push_back
(
std
::
make_pair
(
keys
[
i
],
static_cast
<
int64_t
>
(
i
))
);
}
else
{
framework
::
VisitDataType
(
framework
::
ToDataType
(
value_
->
type
()),
...
...
@@ -141,7 +141,7 @@ std::vector<int64_t> SelectedRows::Get(std::vector<int64_t> keys,
index
*
value_width
,
value_width
));
}
}
return
non_keys
;
return
non_keys
_pair
;
}
bool
SelectedRows
::
Set
(
int64_t
key
,
const
framework
::
Tensor
&
value
)
{
...
...
paddle/fluid/framework/selected_rows.h
浏览文件 @
ff99d941
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
...
...
@@ -78,10 +79,11 @@ class SelectedRows {
/*
* @brief Get value by the key list, if the
*
* @return a list of keys which does not exists in table
* @return a list of pair which contains the non-exists key and the index in
* the value
*/
std
::
vector
<
int64_t
>
Get
(
std
::
vector
<
int64_t
>
keys
,
framework
::
Tensor
*
tensor
)
const
;
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>
>
Get
(
std
::
vector
<
int64_t
>
keys
,
framework
::
Tensor
*
value
)
const
;
/*
* @brief Set a key-value pair into the table.
...
...
paddle/fluid/framework/selected_rows_test.cc
浏览文件 @
ff99d941
...
...
@@ -59,7 +59,7 @@ TEST_F(SelectedRowsTester, SerializeAndDeseralize) {
ASSERT_EQ
(
selected_rows_
->
GetCompleteDims
(),
dst_tensor
.
GetCompleteDims
());
}
TEST_F
(
SelectedRowsTester
,
Table
)
{
TEST_F
(
SelectedRowsTester
,
Sparse
Table
)
{
platform
::
CPUPlace
cpu
;
SelectedRows
table
;
// initialize a sparse table
...
...
@@ -87,11 +87,11 @@ TEST_F(SelectedRowsTester, Table) {
framework
::
Tensor
get_value
;
get_value
.
mutable_data
<
float
>
(
framework
::
make_ddim
({
2
,
100
}),
cpu
);
std
::
vector
<
int64_t
>
keys
({
non_key
,
key
});
auto
non_keys
=
table
.
Get
(
keys
,
&
get_value
);
auto
non_key
_pair
s
=
table
.
Get
(
keys
,
&
get_value
);
ASSERT_EQ
(
get_value
.
data
<
float
>
()[
100
],
static_cast
<
float
>
(
10
));
ASSERT_EQ
(
non_keys
.
size
(),
static_cast
<
size_t
>
(
1
));
ASSERT_EQ
(
non_key
s
[
0
]
,
non_key
);
ASSERT_EQ
(
non_key
_pair
s
.
size
(),
static_cast
<
size_t
>
(
1
));
ASSERT_EQ
(
non_key
_pairs
[
0
].
first
,
non_key
);
}
}
// namespace framework
...
...
paddle/fluid/operators/detail/serde_test.cc
浏览文件 @
ff99d941
...
...
@@ -108,7 +108,7 @@ void RunSerdeTestSelectedRows(platform::Place place) {
EXPECT_FLOAT_EQ
(
tensor_data2
[
i
],
32.7
);
}
for
(
size_t
i
=
0
;
i
<
rows2
->
size
();
++
i
)
{
EXPECT_EQ
(
rows_data2
[
i
],
i
);
EXPECT_EQ
(
rows_data2
[
i
],
static_cast
<
int64_t
>
(
i
)
);
}
EXPECT_EQ
(
slr2
->
height
(),
1000
);
}
...
...
paddle/fluid/operators/lookup_sparse_table_op.cc
0 → 100644
浏览文件 @
ff99d941
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
constexpr
int64_t
kNoPadding
=
-
1
;
class
LookupSparseTableInferShape
:
public
framework
::
InferShapeBase
{
public:
void
operator
()(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of LookupSparseTableOp should not be null."
);
auto
shape_w
=
ctx
->
GetInputDim
(
"W"
);
auto
shape_ids
=
ctx
->
GetInputDim
(
"Ids"
);
shape_w
[
0
]
=
shape_ids
.
size
();
ctx
->
SetOutputDim
(
"Out"
,
shape_w
);
}
};
class
LookupSparseTableOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
out_var
=
scope
.
FindVar
(
Output
(
"Out"
));
auto
w_var
=
scope
.
FindVar
(
Input
(
"W"
));
auto
ids_var
=
scope
.
FindVar
(
Input
(
"Ids"
));
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
Attr
<
int
>
(
"seed"
));
float
min
=
Attr
<
float
>
(
"min"
);
float
max
=
Attr
<
float
>
(
"max"
);
bool
auto_grown_table
=
Attr
<
bool
>
(
"auto_grown_table"
);
PADDLE_ENFORCE
(
out_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The type of Out var should be LodTensor."
);
PADDLE_ENFORCE
(
w_var
->
IsType
<
framework
::
SelectedRows
>
(),
"The type of W var should be SelectedRows."
);
PADDLE_ENFORCE
(
ids_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The type of Ids var should be LoDTensor."
);
auto
&
ids_t
=
ids_var
->
Get
<
framework
::
LoDTensor
>
();
auto
out_t
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
w_t
=
w_var
->
GetMutable
<
framework
::
SelectedRows
>
();
std
::
vector
<
int64_t
>
keys
;
keys
.
resize
(
ids_t
.
numel
());
for
(
size_t
i
=
0
;
i
<
ids_t
.
numel
();
++
i
)
{
keys
[
i
]
=
ids_t
.
data
<
int64_t
>
()[
i
];
}
// TODO(Yancey1989): support CUDA Place for the sparse table
platform
::
CPUPlace
cpu
;
auto
out_shape
=
w_t
->
value
().
dims
();
out_shape
[
0
]
=
keys
.
size
();
out_t
->
Resize
(
out_shape
);
out_t
->
mutable_data
(
cpu
,
w_t
->
value
().
type
());
PADDLE_ENFORCE_EQ
(
framework
::
ToDataType
(
w_t
->
value
().
type
()),
framework
::
proto
::
VarType
::
FP32
,
"The sparse table only support FP32"
);
auto
non_keys_pair
=
w_t
->
Get
(
keys
,
out_t
);
if
(
!
auto_grown_table
)
{
PADDLE_ENFORCE_EQ
(
non_keys_pair
.
size
(),
static_cast
<
size_t
>
(
0
),
"there is some keys does exists in the sparse table."
);
}
auto
value_shape
=
w_t
->
value
().
dims
();
value_shape
[
0
]
=
1
;
for
(
const
auto
&
it
:
non_keys_pair
)
{
const
auto
key
=
it
.
first
;
const
auto
index
=
it
.
second
;
framework
::
Tensor
value
;
value
.
Resize
(
value_shape
);
auto
data
=
value
.
mutable_data
<
float
>
(
cpu
);
std
::
minstd_rand
engine
;
engine
.
seed
(
seed
);
std
::
uniform_real_distribution
<
float
>
dist
(
min
,
max
);
int64_t
size
=
value
.
numel
();
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
data
[
i
]
=
dist
(
engine
);
}
w_t
->
Set
(
key
,
value
);
memory
::
Copy
(
cpu
,
out_t
->
mutable_data
<
float
>
(
cpu
)
+
index
*
value
.
numel
(),
cpu
,
value
.
data
<
float
>
(),
value
.
numel
()
*
sizeof
(
float
));
}
}
};
class
LookupSparseTableOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
LookupSparseTableOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
framework
::
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"W"
,
"(SelectedRows) The input represents embedding table, "
"which is a learnable parameter."
);
AddInput
(
"Ids"
,
"(LoDTensor) Ids's type should be LoDTensor"
"THe ids to be looked up in W."
);
AddOutput
(
"Out"
,
"(LoDTensor) The lookup results, which have the "
"same type as W."
);
AddAttr
<
int64_t
>
(
"padding_idx"
,
"(int64, default -1) "
"If the value is -1, it makes no effect to lookup. "
"Otherwise the given value indicates padding the output "
"with zeros whenever lookup encounters it in Ids."
)
.
SetDefault
(
kNoPadding
);
AddAttr
<
float
>
(
"min"
,
"(float, default -1.0) "
"Minimum value of uniform random"
)
.
SetDefault
(
-
1.0
f
);
AddAttr
<
float
>
(
"max"
,
"(float, default 1.0) "
"Maximun value of uniform random"
)
.
SetDefault
(
1.0
f
);
AddAttr
<
int
>
(
"seed"
,
"(int, default 0) "
"Random seed used for generating samples. "
"0 means use a seed generated by the system."
"Note that if seed is not 0, this operator will always "
"generate the same random numbers every time."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"auto_grown_table"
,
"(bool default false)"
"Whether create new value if for nonexistent key."
)
.
SetDefault
(
true
);
AddComment
(
R"DOC(
Lookup Sprase Tablel Operator.
This operator is used to perform lookup on parameter W,
then concatenated into a sparse tensor.
The type of Ids(Input) is SelectedRows, the rows of Ids contains
the ids to be looked up in W;
if the Id is not in the sparse table, this operator will return a
random value and set the value into the table for the next looking up.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
lookup_sparse_table
,
ops
::
LookupSparseTableOp
,
ops
::
LookupSparseTableInferShape
,
ops
::
LookupSparseTableOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
);
paddle/fluid/operators/sgd_op.cc
浏览文件 @
ff99d941
...
...
@@ -48,6 +48,24 @@ class SGDOp : public framework::OperatorWithKernel {
}
};
class
SGDOpInferVarType
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
input_var
=
op_desc
.
Input
(
"Param"
)[
0
];
for
(
auto
&
out_var
:
op_desc
.
Output
(
"ParamOut"
))
{
if
(
block
->
FindRecursiveOrCreateVar
(
input_var
).
GetType
()
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
block
->
FindRecursiveOrCreateVar
(
out_var
).
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
}
};
class
SGDOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
SGDOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
...
...
@@ -74,5 +92,6 @@ $$param\_out = param - learning\_rate * grad$$
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
sgd
,
ops
::
SGDOp
,
ops
::
SGDOpMaker
);
REGISTER_OPERATOR
(
sgd
,
ops
::
SGDOp
,
ops
::
SGDOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
SGDOpInferVarType
);
REGISTER_OP_CPU_KERNEL
(
sgd
,
ops
::
SGDOpKernel
<
float
>
,
ops
::
SGDOpKernel
<
double
>
);
paddle/fluid/operators/uniform_random_op.cc
浏览文件 @
ff99d941
...
...
@@ -116,11 +116,31 @@ uniform distribution.
.
SetDefault
(
framework
::
proto
::
VarType
::
FP32
);
}
};
class
UniformRandomOpVarTypeInference
:
public
framework
::
VarTypeInference
{
public:
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
if
(
block
->
FindRecursiveOrCreateVar
(
out_var_name
).
GetType
()
==
framework
::
proto
::
VarType
::
SELECTED_ROWS
)
{
block
->
FindRecursiveOrCreateVar
(
out_var_name
)
.
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
block
->
FindRecursiveOrCreateVar
(
out_var_name
)
.
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_WITHOUT_GRADIENT
(
uniform_random
,
paddle
::
operators
::
UniformRandomOp
,
paddle
::
operators
::
UniformRandomOpMaker
);
REGISTER_OPERATOR
(
uniform_random
,
paddle
::
operators
::
UniformRandomOp
,
paddle
::
operators
::
UniformRandomOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
,
paddle
::
operators
::
UniformRandomOpVarTypeInference
);
REGISTER_OP_CPU_KERNEL
(
uniform_random
,
paddle
::
operators
::
CPUUniformRandomKernel
<
float
>
,
paddle
::
operators
::
CPUUniformRandomKernel
<
double
>
);
...
...
python/paddle/fluid/distribute_transpiler.py
浏览文件 @
ff99d941
...
...
@@ -661,7 +661,7 @@ class DistributeTranspiler:
shape
=
trainer_out
.
shape
,
dtype
=
trainer_out
.
dtype
)
prefetch_block
.
append_op
(
type
=
LOOKUP_TABLE_TYPE
,
type
=
"lookup_sparse_table"
,
inputs
=
{
'Ids'
:
pserver_ids
,
"W"
:
table_var
},
outputs
=
{
"Out"
:
pserver_out
},
...
...
@@ -685,9 +685,14 @@ class DistributeTranspiler:
# STEP: create table optimize block
# create table param and grad var in pserver program
param_var
=
_clone_var
(
pserver_program
.
global_block
(),
self
.
origin_program
.
global_block
().
vars
[
self
.
table_name
])
origin_param_var
=
self
.
origin_program
.
global_block
().
vars
[
self
.
table_name
]
param_var
=
pserver_program
.
global_block
().
create_var
(
name
=
origin_param_var
.
name
,
shape
=
origin_param_var
.
shape
,
dtype
=
origin_param_var
.
dtype
,
type
=
core
.
VarDesc
.
VarType
.
SELECTED_ROWS
,
persistable
=
True
)
grad_var
=
_clone_var
(
pserver_program
.
global_block
(),
self
.
origin_program
.
global_block
().
vars
[
framework
.
grad_var_name
(
...
...
python/paddle/fluid/tests/unittests/test_lookup_sparse_table_op.py
0 → 100644
浏览文件 @
ff99d941
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
def
output_hist
(
out
):
hist
,
_
=
np
.
histogram
(
out
,
range
=
(
-
5
,
10
))
hist
=
hist
.
astype
(
"float32"
)
hist
/=
float
(
out
.
size
)
prob
=
0.1
*
np
.
ones
((
10
))
return
hist
,
prob
class
TestLookupSpraseTable
(
OpTest
):
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
# create and initialize Id Variable
ids
=
scope
.
var
(
"Ids"
).
get_tensor
()
ids_array
=
np
.
array
([
0
,
2
,
3
,
5
,
100
]).
astype
(
"int64"
)
ids
.
set
(
ids_array
,
place
)
# create and initialize W Variable
rows
=
[
0
,
1
,
2
,
3
,
4
,
5
,
6
]
row_numel
=
10000
w_selected_rows
=
scope
.
var
(
'W'
).
get_selected_rows
()
w_selected_rows
.
set_height
(
len
(
rows
))
w_selected_rows
.
set_rows
(
rows
)
w_array
=
np
.
ones
((
len
(
rows
),
row_numel
)).
astype
(
"float32"
)
for
i
in
range
(
len
(
rows
)):
w_array
[
i
]
*=
i
w_tensor
=
w_selected_rows
.
get_tensor
()
w_tensor
.
set
(
w_array
,
place
)
# create Out Variable
out_tensor
=
scope
.
var
(
'Out'
).
get_tensor
()
# create and run lookup_table operator
lookup_table
=
Operator
(
"lookup_sparse_table"
,
W
=
'W'
,
Ids
=
'Ids'
,
Out
=
'Out'
,
min
=-
5.0
,
max
=
10.0
,
seed
=
10
)
lookup_table
.
run
(
scope
,
place
)
# get result from Out
result_array
=
np
.
array
(
out_tensor
)
# all(): return True if all elements of the iterable are true (or if the iterable is empty)
for
idx
,
row
in
enumerate
(
ids_array
[:
-
2
]):
assert
(
row
==
result_array
[
idx
]).
all
()
# check the random value
hist
,
prob
=
output_hist
(
result_array
[
-
1
])
self
.
assertTrue
(
np
.
allclose
(
hist
,
prob
,
rtol
=
0
,
atol
=
0.01
),
"hist: "
+
str
(
hist
))
def
test_w_is_selected_rows
(
self
):
places
=
[
core
.
CPUPlace
()]
# currently only support CPU
for
place
in
places
:
self
.
check_with_place
(
place
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录