未验证 提交 fd1d2c89 编写于 作者: Q Qiyang Min 提交者: GitHub

Merge pull request #14894 from velconia/add_huber_regression_loss_op

Add python interface for huber loss
......@@ -201,6 +201,7 @@ paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.psroi_pool ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.huber_loss ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
......
......@@ -124,8 +124,9 @@ REGISTER_OPERATOR(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker<float>,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(huber_loss_grad, ops::HuberLossGradOp);
REGISTER_OP_CPU_KERNEL(
huber_loss,
ops::HuberLossKernel<paddle::platform::CPUDeviceContext, float>);
huber_loss, ops::HuberLossKernel<paddle::platform::CPUDeviceContext, float>,
ops::HuberLossKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
huber_loss_grad,
ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, float>);
ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::HuberLossGradKernel<paddle::platform::CPUDeviceContext, double>);
......@@ -176,6 +176,7 @@ __all__ = [
'get_tensor_from_selected_rows',
'lstm',
'psroi_pool',
'huber_loss',
]
kIgnoreIndex = -100
......@@ -497,7 +498,7 @@ def lstm(input,
If Device is GPU, This op will use cudnn LSTM implementation
A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:
$$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$
......@@ -524,19 +525,19 @@ def lstm(input,
- $\tilde{c_t}$ is also called candidate hidden state,
which is computed based on the current input and the previous hidden state.
Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication,
X represensts a matrix multiplication
Args:
input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
init_h(Variable): The initial hidden state of the LSTM
init_h(Variable): The initial hidden state of the LSTM
This is a tensor with shape ( num_layers x batch_size x hidden_size)
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
init_c(Variable): The initial cell state of the LSTM.
This is a tensor with shape ( num_layers x batch_size x hidden_size )
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
hidden_size (int): hidden size of the LSTM
num_layers (int): total layers number of the LSTM
dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
......@@ -555,10 +556,10 @@ def lstm(input,
if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
last_h(Tensor): the hidden state of the last step of LSTM
shape is ( num_layers x batch_size x hidden_size )
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
last_c(Tensor): the cell state of the last step of LSTM
shape is ( num_layers x batch_size x hidden_size )
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
Examples:
......@@ -4658,7 +4659,7 @@ def ctc_greedy_decoder(input, blank, name=None):
[0.5, 0.1, 0.3, 0.1]]
input.lod = [[4, 4]]
Computation:
step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
......@@ -4691,7 +4692,7 @@ def ctc_greedy_decoder(input, blank, name=None):
Returns:
Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
'Lp' is the sum if all output sequences' length. If all the sequences
in result were empty, the result LoDTensor will be [-1] with
in result were empty, the result LoDTensor will be [-1] with
LoD [[]] and dims [1, 1].
Examples:
......@@ -5045,7 +5046,7 @@ def hsigmoid(input,
"""
The hierarchical sigmoid operator is used to accelerate the training
process of language model. This operator organizes the classes into a
complete binary tree, or you can use is_custom to pass your own tree to
complete binary tree, or you can use is_custom to pass your own tree to
implement hierarchical. Each leaf node represents a class(a word) and each
internal node acts as a binary classifier. For each word there's a unique
path from root to it's leaf node, hsigmoid calculate the cost for each
......@@ -5061,7 +5062,7 @@ def hsigmoid(input,
2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
means label of each binary classification, using 1 indicate true, 0 indicate false.
4. now, each word should has its path and code along the path, you can pass a batch of path and code
4. now, each word should has its path and code along the path, you can pass a batch of path and code
related to the same batch of inputs.
......@@ -5071,8 +5072,8 @@ def hsigmoid(input,
and :math:`D` is the feature size.
label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N \\times 1]`.
num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
which indicates the num of classes using by binary classify.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
......@@ -5085,15 +5086,15 @@ def hsigmoid(input,
is not set, the bias is initialized zero. Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
path_table: (Variable|None) this variable can store each batch of samples' path to root,
path_table: (Variable|None) this variable can store each batch of samples' path to root,
it should be in leaf -> root order
path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
structure and each element in this array is indexes in parent nodes' Weight Matrix.
path_code: (Variable|None) this variable can store each batch of samples' code,
path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
structure and each element in this array is indexes in parent nodes' Weight Matrix.
path_code: (Variable|None) this variable can store each batch of samples' code,
each code consist with every code of parent nodes. it should be in leaf -> root order
is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
of W and input will be sparse.
Returns:
......@@ -9377,3 +9378,51 @@ def psroi_pool(input,
'pooled_width': pooled_width
})
return out
def huber_loss(input, label, delta):
"""
Huber loss is a loss function used in robust.
Huber loss can evaluate the fitness of input to label.
Different from MSE loss, Huber loss is more robust for outliers.
When the difference between input and label is large than delta
.. math::
huber\_loss = delta * (label - input) - 0.5 * delta * delta
When the difference between input and label is less than delta
.. math::
huber\_loss = 0.5 * (label - input) * (label - input)
Args:
input (Variable): This input is a probability computed by the previous operator.
The first dimension is batch size, and the last dimension is 1.
label (Variable): The groud truth whose first dimension is batch size
and last dimension is 1.
delta (float): The parameter of huber loss, which controls
the range of outliers
Returns:
huber\_loss (Variable): The huber loss with shape [batch_size, 1].
Examples:
.. code-block:: python
predictions = fluid.layers.softmax(x)
loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
"""
helper = LayerHelper('huber_loss', **locals())
residual = helper.create_variable_for_type_inference(
dtype=helper.input_dtype())
out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
helper.append_op(
type='huber_loss',
inputs={'X': input,
'Y': label},
outputs={'Out': out,
'Residual': residual},
attrs={'delta': delta})
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册