Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
fcad0a3a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
fcad0a3a
编写于
8月 31, 2017
作者:
C
chengduo
提交者:
GitHub
8月 31, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #3504 from chengduoZH/Add_3DPooling
Add 3DPoolingLayer
上级
1e6c9926
63748319
变更
15
展开全部
隐藏空白更改
内联
并排
Showing
15 changed file
with
2436 addition
and
14 deletion
+2436
-14
paddle/cuda/include/hl_cnn.h
paddle/cuda/include/hl_cnn.h
+91
-1
paddle/cuda/include/stub/hl_cnn_stub.h
paddle/cuda/include/stub/hl_cnn_stub.h
+90
-0
paddle/cuda/src/hl_cuda_cnn.cu
paddle/cuda/src/hl_cuda_cnn.cu
+427
-0
paddle/gserver/layers/Pool3DLayer.cpp
paddle/gserver/layers/Pool3DLayer.cpp
+178
-0
paddle/gserver/layers/Pool3DLayer.h
paddle/gserver/layers/Pool3DLayer.h
+49
-0
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+69
-0
paddle/math/Matrix.cpp
paddle/math/Matrix.cpp
+485
-0
paddle/math/Matrix.h
paddle/math/Matrix.h
+246
-7
paddle/math/tests/test_matrixCompare.cpp
paddle/math/tests/test_matrixCompare.cpp
+393
-1
proto/ModelConfig.proto
proto/ModelConfig.proto
+6
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+94
-1
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+145
-3
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
.../paddle/trainer_config_helpers/tests/configs/file_list.sh
+2
-1
python/paddle/trainer_config_helpers/tests/configs/protostr/test_pooling3D_layer.protostr
...pers/tests/configs/protostr/test_pooling3D_layer.protostr
+123
-0
python/paddle/trainer_config_helpers/tests/configs/test_pooling3D_layer.py
...iner_config_helpers/tests/configs/test_pooling3D_layer.py
+38
-0
未找到文件。
paddle/cuda/include/hl_cnn.h
浏览文件 @
fcad0a3a
...
...
@@ -173,6 +173,96 @@ extern void hl_avgpool_backward(const int frameCnt,
real
*
backGrad
,
const
int
outStride
);
extern
void
hl_maxpool3D_forward
(
const
int
frameCnt
,
const
real
*
inputData
,
const
int
channels
,
const
int
depth
,
const
int
height
,
const
int
width
,
const
int
pooledD
,
const
int
pooledH
,
const
int
pooledW
,
const
int
sizeZ
,
const
int
sizeY
,
const
int
sizeX
,
const
int
strideD
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingD
,
const
int
paddingH
,
const
int
paddingW
,
real
*
tgtData
,
real
*
maxPoolIdxData
,
const
int
tgtStride
);
extern
void
hl_maxpool3D_backward
(
const
int
frameCnt
,
const
real
*
outGrad
,
const
int
channels
,
const
int
depth
,
const
int
height
,
const
int
width
,
const
int
pooledD
,
const
int
pooledH
,
const
int
pooledW
,
const
int
sizeZ
,
const
int
sizeY
,
const
int
sizeX
,
const
int
strideD
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingD
,
const
int
paddingH
,
const
int
paddingW
,
real
scaleA
,
real
scaleB
,
real
*
targetGrad
,
real
*
maxPoolIdxData
,
const
int
outStride
);
extern
void
hl_avgpool3D_forward
(
const
int
frameCnt
,
const
real
*
inputData
,
const
int
channels
,
const
int
depth
,
const
int
height
,
const
int
width
,
const
int
pooledD
,
const
int
pooledH
,
const
int
pooledW
,
const
int
sizeZ
,
const
int
sizeY
,
const
int
sizeX
,
const
int
strideD
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingD
,
const
int
paddingH
,
const
int
paddingW
,
real
*
tgtData
,
const
int
tgtStride
);
extern
void
hl_avgpool3D_backward
(
const
int
frameCnt
,
const
real
*
outGrad
,
const
int
channels
,
const
int
depth
,
const
int
height
,
const
int
width
,
const
int
pooledD
,
const
int
pooledH
,
const
int
pooledW
,
const
int
sizeZ
,
const
int
sizeY
,
const
int
sizeX
,
const
int
strideD
,
const
int
strideH
,
const
int
strideW
,
int
paddingD
,
int
paddingH
,
int
paddingW
,
real
scaleA
,
real
scaleB
,
real
*
backGrad
,
const
int
outStride
);
/**
* @brief Bilinear interpolation forward.
*
...
...
@@ -275,4 +365,4 @@ extern void hl_maxout_backward(real* inGrad,
size_t
featLen
,
size_t
groups
);
#endif
/* HL_CNN_H_ */
#endif
// HL_CNN_H_
paddle/cuda/include/stub/hl_cnn_stub.h
浏览文件 @
fcad0a3a
...
...
@@ -87,6 +87,96 @@ inline void hl_avgpool_backward(const int frameCnt,
real
*
backGrad
,
const
int
outStride
)
{}
inline
void
hl_maxpool3D_forward
(
const
int
frameCnt
,
const
real
*
inputData
,
const
int
channels
,
const
int
depth
,
const
int
height
,
const
int
width
,
const
int
pooledD
,
const
int
pooledH
,
const
int
pooledW
,
const
int
sizeZ
,
const
int
sizeY
,
const
int
sizeX
,
const
int
strideD
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingD
,
const
int
paddingH
,
const
int
paddingW
,
real
*
tgtData
,
real
*
maxPoolIdxData
,
const
int
tgtStride
)
{}
inline
void
hl_maxpool3D_backward
(
const
int
frameCnt
,
const
real
*
outGrad
,
const
int
channels
,
const
int
depth
,
const
int
height
,
const
int
width
,
const
int
pooledD
,
const
int
pooledH
,
const
int
pooledW
,
const
int
sizeZ
,
const
int
sizeY
,
const
int
sizeX
,
const
int
strideD
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingD
,
const
int
paddingH
,
const
int
paddingW
,
real
scaleA
,
real
scaleB
,
real
*
targetGrad
,
real
*
maxPoolIdxData
,
const
int
outStride
)
{}
inline
void
hl_avgpool3D_forward
(
const
int
frameCnt
,
const
real
*
inputData
,
const
int
channels
,
const
int
depth
,
const
int
height
,
const
int
width
,
const
int
pooledD
,
const
int
pooledH
,
const
int
pooledW
,
const
int
sizeZ
,
const
int
sizeY
,
const
int
sizeX
,
const
int
strideD
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingD
,
const
int
paddingH
,
const
int
paddingW
,
real
*
tgtData
,
const
int
tgtStride
)
{}
inline
void
hl_avgpool3D_backward
(
const
int
frameCnt
,
const
real
*
outGrad
,
const
int
channels
,
const
int
depth
,
const
int
height
,
const
int
width
,
const
int
pooledD
,
const
int
pooledH
,
const
int
pooledW
,
const
int
sizeZ
,
const
int
sizeY
,
const
int
sizeX
,
const
int
strideD
,
const
int
strideH
,
const
int
strideW
,
const
int
paddingD
,
const
int
paddingH
,
const
int
paddingW
,
real
scaleA
,
real
scaleB
,
real
*
backGrad
,
const
int
outStride
)
{}
inline
void
hl_bilinear_forward
(
const
real
*
inData
,
const
size_t
inImgH
,
const
size_t
inImgW
,
...
...
paddle/cuda/src/hl_cuda_cnn.cu
浏览文件 @
fcad0a3a
此差异已折叠。
点击以展开。
paddle/gserver/layers/Pool3DLayer.cpp
0 → 100644
浏览文件 @
fcad0a3a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Pool3DLayer.h"
#include "PoolProjectionLayer.h"
#include "paddle/utils/Logging.h"
namespace
paddle
{
REGISTER_LAYER
(
pool3d
,
Pool3DLayer
);
bool
Pool3DLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
Layer
::
init
(
layerMap
,
parameterMap
);
/* the size of inputs for pool-layer is 1 */
CHECK_EQ
(
config_
.
inputs_size
(),
1
);
const
PoolConfig
&
conf
=
config_
.
inputs
(
0
).
pool_conf
();
poolType_
=
conf
.
pool_type
();
channels_
=
conf
.
channels
();
sizeX_
=
conf
.
size_x
();
sizeY_
=
conf
.
size_y
();
sizeZ_
=
conf
.
size_z
();
strideW_
=
conf
.
stride
();
strideH_
=
conf
.
stride_y
();
strideD_
=
conf
.
stride_z
();
imgSizeW_
=
conf
.
img_size
();
imgSizeH_
=
conf
.
img_size_y
();
imgSizeD_
=
conf
.
img_size_z
();
paddingW_
=
conf
.
padding
();
paddingH_
=
conf
.
padding_y
();
paddingD_
=
conf
.
padding_z
();
outputW_
=
conf
.
output_x
();
outputH_
=
conf
.
output_y
();
outputD_
=
conf
.
output_z
();
return
true
;
}
size_t
Pool3DLayer
::
getSize
()
{
CHECK_EQ
(
inputLayers_
.
size
(),
1UL
);
size_t
layerSize
=
0
;
outputD_
=
outputSize
(
imgSizeD_
,
sizeZ_
,
paddingD_
,
strideD_
,
false
);
outputH_
=
outputSize
(
imgSizeH_
,
sizeY_
,
paddingH_
,
strideH_
,
false
);
outputW_
=
outputSize
(
imgSizeW_
,
sizeX_
,
paddingW_
,
strideW_
,
false
);
layerSize
=
outputD_
*
outputH_
*
outputW_
*
channels_
;
getOutput
().
setFrameHeight
(
outputH_
);
getOutput
().
setFrameWidth
(
outputW_
);
getOutput
().
setFrameDepth
(
outputD_
);
return
layerSize
;
}
void
Pool3DLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
const
MatrixPtr
&
inMat
=
inputLayers_
[
0
]
->
getOutputValue
();
size_t
batchSize
=
inMat
->
getHeight
();
size_t
outWidth
=
getSize
();
resetOutput
(
batchSize
,
outWidth
);
Matrix
::
resizeOrCreate
(
maxPoolIdx_
,
batchSize
,
outWidth
,
false
,
useGpu_
);
const
MatrixPtr
outMat
=
getOutputValue
();
if
(
poolType_
==
"avg"
)
{
outMat
->
avgPool3DForward
(
*
inMat
,
channels_
,
imgSizeD_
,
imgSizeH_
,
imgSizeW_
,
outputD_
,
outputH_
,
outputW_
,
sizeZ_
,
sizeY_
,
sizeX_
,
strideD_
,
strideH_
,
strideW_
,
paddingD_
,
paddingH_
,
paddingW_
);
}
else
if
(
poolType_
==
"max"
)
{
outMat
->
maxPool3DForward
(
*
inMat
,
*
maxPoolIdx_
,
channels_
,
imgSizeD_
,
imgSizeH_
,
imgSizeW_
,
outputD_
,
outputH_
,
outputW_
,
sizeZ_
,
sizeY_
,
sizeX_
,
strideD_
,
strideH_
,
strideW_
,
paddingD_
,
paddingH_
,
paddingW_
);
}
else
{
LOG
(
FATAL
)
<<
"Unknown pool type: "
<<
poolType_
;
}
forwardActivation
();
}
void
Pool3DLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
backwardActivation
();
(
void
)
callback
;
if
(
NULL
==
getInputGrad
(
0
))
return
;
MatrixPtr
inMat
=
inputLayers_
[
0
]
->
getOutputValue
();
MatrixPtr
inGradMat
=
inputLayers_
[
0
]
->
getOutputGrad
();
MatrixPtr
outMat
=
getOutputValue
();
MatrixPtr
outGradMat
=
getOutputGrad
();
if
(
poolType_
==
"avg"
)
{
inGradMat
->
avgPool3DBackward
(
*
outGradMat
,
imgSizeD_
,
imgSizeH_
,
imgSizeW_
,
outputD_
,
outputH_
,
outputW_
,
sizeZ_
,
sizeY_
,
sizeZ_
,
strideD_
,
strideH_
,
strideW_
,
paddingD_
,
paddingH_
,
paddingW_
,
1.0
,
1.0
);
}
else
if
(
poolType_
==
"max"
)
{
inGradMat
->
maxPool3DBackward
(
*
outGradMat
,
*
maxPoolIdx_
,
imgSizeD_
,
imgSizeH_
,
imgSizeW_
,
outputD_
,
outputH_
,
outputW_
,
sizeZ_
,
sizeY_
,
sizeZ_
,
strideD_
,
strideH_
,
strideW_
,
paddingD_
,
paddingH_
,
paddingW_
,
1.0
,
1.0
);
}
else
{
LOG
(
FATAL
)
<<
"Unknown pool type: "
<<
poolType_
;
}
}
}
// namespace paddle
paddle/gserver/layers/Pool3DLayer.h
0 → 100644
浏览文件 @
fcad0a3a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "Layer.h"
#include "paddle/math/MathUtils.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief Basic parent layer of pooling
* Pools the input within regions
*/
class
Pool3DLayer
:
public
Layer
{
public:
explicit
Pool3DLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
~
Pool3DLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
)
override
;
size_t
getSize
();
protected:
int
channels_
;
int
sizeX_
,
sizeY_
,
sizeZ_
;
int
strideW_
,
strideH_
,
strideD_
;
int
paddingW_
,
paddingH_
,
paddingD_
;
int
imgSizeW_
,
imgSizeH_
,
imgSizeD_
;
int
outputW_
,
outputH_
,
outputD_
;
std
::
string
poolType_
;
MatrixPtr
maxPoolIdx_
;
};
}
// namespace paddle
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
fcad0a3a
...
...
@@ -1246,6 +1246,75 @@ TEST(Layer, PoolLayer) {
#endif
}
void
setPool3DConfig
(
TestConfig
*
config
,
PoolConfig
*
pool
,
const
string
&
poolType
)
{
// filter size
const
int
NUM_FILTERS
=
16
;
const
int
FILTER_SIZE
=
3
;
const
int
FILTER_SIZE_Y
=
3
;
const
int
FILTER_SIZE_Z
=
3
;
const
int
CHANNELS
=
16
;
(
*
config
).
biasSize
=
0
;
(
*
config
).
layerConfig
.
set_type
(
"pool3d"
);
(
*
config
).
layerConfig
.
set_num_filters
(
NUM_FILTERS
);
int
kw
=
FILTER_SIZE
,
kh
=
FILTER_SIZE_Y
,
kd
=
FILTER_SIZE_Z
;
int
pw
=
0
,
ph
=
0
,
pd
=
0
;
int
sw
=
2
,
sh
=
2
,
sd
=
2
;
pool
->
set_pool_type
(
poolType
);
pool
->
set_pool_type
(
"avg"
);
pool
->
set_channels
(
CHANNELS
);
pool
->
set_size_x
(
kw
);
pool
->
set_size_y
(
kh
);
pool
->
set_size_z
(
kd
);
pool
->
set_padding
(
0
);
pool
->
set_padding_y
(
0
);
pool
->
set_padding_z
(
0
);
pool
->
set_stride
(
sw
);
pool
->
set_stride_y
(
sh
);
pool
->
set_stride_z
(
sd
);
pool
->
set_start
(
0
);
int
ow
=
outputSize
(
pool
->
img_size
(),
kw
,
pw
,
sw
,
/* caffeMode */
false
);
int
oh
=
outputSize
(
pool
->
img_size_y
(),
kh
,
ph
,
sh
,
/* caffeMode */
false
);
int
od
=
outputSize
(
pool
->
img_size_z
(),
kd
,
pd
,
sd
,
/* caffeMode */
false
);
pool
->
set_output_x
(
ow
);
pool
->
set_output_y
(
oh
);
pool
->
set_output_z
(
od
);
}
void
testPool3DLayer
(
const
string
&
poolType
,
bool
trans
,
bool
useGpu
)
{
TestConfig
config
;
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
11664
,
0
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
PoolConfig
*
pool
=
input
->
mutable_pool_conf
();
const
int
IMAGE_SIZE
=
9
;
const
int
IMAGE_SIZE_Y
=
9
;
const
int
IMAGE_SIZE_Z
=
9
;
pool
->
set_img_size
(
IMAGE_SIZE
);
pool
->
set_img_size_y
(
IMAGE_SIZE_Y
);
pool
->
set_img_size_z
(
IMAGE_SIZE_Z
);
setPool3DConfig
(
&
config
,
pool
,
poolType
);
config
.
layerConfig
.
set_size
(
pool
->
output_x
()
*
pool
->
output_y
()
*
pool
->
channels
());
testLayerGrad
(
config
,
"pool3d"
,
100
,
trans
,
useGpu
);
}
TEST
(
Layer
,
Pool3DLayer
)
{
testPool3DLayer
(
"avg"
,
/* trans= */
false
,
/* useGpu= */
false
);
testPool3DLayer
(
"max"
,
/* trans= */
false
,
/* useGpu= */
false
);
#ifndef PADDLE_ONLY_CPU
testPool3DLayer
(
"avg"
,
/* trans= */
false
,
/* useGpu= */
true
);
testPool3DLayer
(
"max"
,
/* trans= */
false
,
/* useGpu= */
true
);
#endif
}
void
testSppLayer
(
const
string
&
poolType
,
const
int
pyramidHeight
,
bool
trans
,
...
...
paddle/math/Matrix.cpp
浏览文件 @
fcad0a3a
此差异已折叠。
点击以展开。
paddle/math/Matrix.h
浏览文件 @
fcad0a3a
...
...
@@ -928,15 +928,102 @@ public:
size_t
paddingW
)
{
LOG
(
FATAL
)
<<
"Not implemeted"
;
}
/**
* Input: one or more sequences. Each sequence contains some instances.
*
* Output: output size is the number of input sequences (NOT input
* instances).
*
* output[i] is set to max_input[i].
* Pooling 3D forward operation, pick out the largest element
* in the sizeX of value
*/
virtual
void
maxPool3DForward
(
Matrix
&
inputMat
,
Matrix
&
maxPoolIdx
,
size_t
channels
,
size_t
imgSizeD
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
outputD
,
size_t
outputH
,
size_t
outputW
,
size_t
sizeZ
,
size_t
sizeY
,
size_t
sizeX
,
size_t
strideD
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingD
,
size_t
paddingH
,
size_t
paddingW
)
{
LOG
(
FATAL
)
<<
"Not implemeted"
;
}
virtual
void
maxPool3DBackward
(
Matrix
&
outGrad
,
Matrix
&
maxPoolIdx
,
size_t
imgSizeD
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
outputD
,
size_t
outputH
,
size_t
outputW
,
size_t
sizeZ
,
size_t
sizeY
,
size_t
sizeX
,
size_t
strideD
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingD
,
size_t
paddingH
,
size_t
paddingW
,
real
scaleTargets
,
real
scaleOutput
)
{
LOG
(
FATAL
)
<<
"Not implemeted"
;
}
virtual
void
avgPool3DForward
(
Matrix
&
input
,
size_t
channels
,
size_t
imgSizeD
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
outputD
,
size_t
outputH
,
size_t
outputW
,
size_t
sizeZ
,
size_t
sizeY
,
size_t
sizeX
,
size_t
strideD
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingD
,
size_t
paddingH
,
size_t
paddingW
)
{
LOG
(
FATAL
)
<<
"Not implemeted"
;
}
virtual
void
avgPool3DBackward
(
Matrix
&
input
,
size_t
imgSizeD
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
outputD
,
size_t
outputH
,
size_t
outputW
,
size_t
sizeZ
,
size_t
sizeY
,
size_t
sizeX
,
size_t
strideD
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingD
,
size_t
paddingH
,
size_t
paddingW
,
real
scaleTargets
,
real
scaleOutput
)
{
LOG
(
FATAL
)
<<
"Not implemeted"
;
}
/**
* Input: one or more sequences. Each sequence contains some instances.
*
* Output: output size is the number of input sequences (NOT input
* instances).
*
* output[i] is set to max_input[i].
*/
virtual
void
maxSequenceForward
(
Matrix
&
input
,
const
IVector
&
sequence
,
IVector
&
index
)
{
...
...
@@ -1384,6 +1471,82 @@ public:
size_t
paddingH
,
size_t
paddingW
);
void
maxPool3DForward
(
Matrix
&
inputMat
,
Matrix
&
maxPoolIdx
,
size_t
channels
,
size_t
imgSizeD
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
outputD
,
size_t
outputH
,
size_t
outputW
,
size_t
sizeZ
,
size_t
sizeY
,
size_t
sizeX
,
size_t
strideD
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingD
,
size_t
paddingH
,
size_t
paddingW
);
void
maxPool3DBackward
(
Matrix
&
outGrad
,
Matrix
&
maxPoolIdx
,
size_t
imgSizeD
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
outputD
,
size_t
outputH
,
size_t
outputW
,
size_t
sizeZ
,
size_t
sizeY
,
size_t
sizeX
,
size_t
strideD
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingD
,
size_t
paddingH
,
size_t
paddingW
,
real
scaleTargets
,
real
scaleOutput
);
void
avgPool3DForward
(
Matrix
&
input
,
size_t
channels
,
size_t
imgSizeD
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
outputD
,
size_t
outputH
,
size_t
outputW
,
size_t
sizeZ
,
size_t
sizeY
,
size_t
sizeX
,
size_t
strideD
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingD
,
size_t
paddingH
,
size_t
paddingW
);
void
avgPool3DBackward
(
Matrix
&
input
,
size_t
imgSizeD
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
outputD
,
size_t
outputH
,
size_t
outputW
,
size_t
sizeZ
,
size_t
sizeY
,
size_t
sizeX
,
size_t
strideD
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingD
,
size_t
paddingH
,
size_t
paddingW
,
real
scaleTargets
,
real
scaleOutput
);
void
maxSequenceForward
(
Matrix
&
input
,
const
IVector
&
sequence
,
IVector
&
index
);
...
...
@@ -1575,6 +1738,82 @@ public:
size_t
paddingH
,
size_t
paddingW
);
void
maxPool3DForward
(
Matrix
&
inputMat
,
Matrix
&
maxPoolIdx
,
size_t
channels
,
size_t
imgSizeD
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
outputD
,
size_t
outputH
,
size_t
outputW
,
size_t
sizeZ
,
size_t
sizeY
,
size_t
sizeX
,
size_t
strideD
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingD
,
size_t
paddingH
,
size_t
paddingW
);
void
maxPool3DBackward
(
Matrix
&
outGrad
,
Matrix
&
maxPoolIdx
,
size_t
imgSizeD
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
outputD
,
size_t
outputH
,
size_t
outputW
,
size_t
sizeZ
,
size_t
sizeY
,
size_t
sizeX
,
size_t
strideD
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingD
,
size_t
paddingH
,
size_t
paddingW
,
real
scaleTargets
,
real
scaleOutput
);
void
avgPool3DForward
(
Matrix
&
input
,
size_t
channels
,
size_t
imgSizeD
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
outputD
,
size_t
outputH
,
size_t
outputW
,
size_t
sizeZ
,
size_t
sizeY
,
size_t
sizeX
,
size_t
strideD
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingD
,
size_t
paddingH
,
size_t
paddingW
);
void
avgPool3DBackward
(
Matrix
&
input
,
size_t
imgSizeD
,
size_t
imgSizeH
,
size_t
imgSizeW
,
size_t
outputD
,
size_t
outputH
,
size_t
outputW
,
size_t
sizeZ
,
size_t
sizeY
,
size_t
sizeX
,
size_t
strideD
,
size_t
strideH
,
size_t
strideW
,
size_t
paddingD
,
size_t
paddingH
,
size_t
paddingW
,
real
scaleTargets
,
real
scaleOutput
);
void
maxSequenceForward
(
Matrix
&
input
,
const
IVector
&
sequence
,
IVector
&
index
);
...
...
paddle/math/tests/test_matrixCompare.cpp
浏览文件 @
fcad0a3a
...
...
@@ -1204,6 +1204,399 @@ TEST(Matrix, warpCTC) {
}
}
void
testMaxPool3DFwdBwd
(
int
numSamples
,
int
channels
,
int
imgSizeD
,
int
imgSizeH
,
int
imgSizeW
,
int
ksizeD
,
int
ksizeH
,
int
ksizeW
,
int
strideD
,
int
strideH
,
int
strideW
,
int
padD
,
int
padH
,
int
padW
)
{
int
outD
=
outputSize
(
imgSizeD
,
ksizeD
,
padD
,
strideD
,
true
);
int
outH
=
outputSize
(
imgSizeH
,
ksizeH
,
padH
,
strideH
,
true
);
int
outW
=
outputSize
(
imgSizeW
,
ksizeW
,
padW
,
strideW
,
true
);
int
inWidth
=
channels
*
imgSizeD
*
imgSizeH
*
imgSizeW
;
MatrixPtr
input
=
CpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
false
);
MatrixPtr
inputGpu
=
GpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
true
);
int
outWidth
=
channels
*
outD
*
outH
*
outW
;
MatrixPtr
target
=
CpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
false
);
MatrixPtr
targetGpu
=
GpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
true
);
MatrixPtr
maxIdx
=
CpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
false
);
MatrixPtr
maxIdxGpu
=
GpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
true
);
input
->
randomizeUniform
();
target
->
randomizeUniform
();
inputGpu
->
copyFrom
(
*
input
);
targetGpu
->
copyFrom
(
*
target
);
target
->
maxPool3DForward
(
*
input
,
*
maxIdx
,
channels
,
imgSizeD
,
imgSizeH
,
imgSizeW
,
outD
,
outH
,
outW
,
ksizeD
,
ksizeH
,
ksizeW
,
strideD
,
strideH
,
strideW
,
padD
,
padH
,
padW
);
targetGpu
->
maxPool3DForward
(
*
inputGpu
,
*
maxIdxGpu
,
channels
,
imgSizeD
,
imgSizeH
,
imgSizeW
,
outD
,
outH
,
outW
,
ksizeD
,
ksizeH
,
ksizeW
,
strideD
,
strideH
,
strideW
,
padD
,
padH
,
padW
);
MatrixPtr
targetCheck
=
CpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
false
);
targetCheck
->
copyFrom
(
*
targetGpu
);
checkMatrixEqual
(
target
,
targetCheck
);
MatrixPtr
inputGrad
=
CpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
false
);
MatrixPtr
inputGpuGrad
=
GpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
true
);
MatrixPtr
targetGrad
=
CpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
false
);
MatrixPtr
targetGpuGrad
=
GpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
true
);
inputGrad
->
randomizeUniform
();
targetGrad
->
randomizeUniform
();
inputGpuGrad
->
copyFrom
(
*
inputGrad
);
targetGpuGrad
->
copyFrom
(
*
targetGrad
);
inputGrad
->
maxPool3DBackward
(
*
targetGrad
,
*
maxIdx
,
imgSizeD
,
imgSizeH
,
imgSizeW
,
outD
,
outH
,
outW
,
ksizeD
,
ksizeH
,
ksizeW
,
strideD
,
strideH
,
strideW
,
padD
,
padH
,
padW
,
1.0
,
1.0
);
inputGpuGrad
->
maxPool3DBackward
(
*
targetGpuGrad
,
*
maxIdxGpu
,
imgSizeD
,
imgSizeH
,
imgSizeW
,
outD
,
outH
,
outW
,
ksizeD
,
ksizeH
,
ksizeW
,
strideD
,
strideH
,
strideW
,
padD
,
padH
,
padW
,
1.0
,
1.0
);
MatrixPtr
targetBwdCheck
=
CpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
false
);
targetBwdCheck
->
copyFrom
(
*
inputGpuGrad
);
checkMatrixEqual
(
inputGrad
,
targetBwdCheck
);
}
void
testAvgPool3DFwdBwd
(
int
numSamples
,
int
channels
,
int
imgSizeD
,
int
imgSizeH
,
int
imgSizeW
,
int
ksizeD
,
int
ksizeH
,
int
ksizeW
,
int
strideD
,
int
strideH
,
int
strideW
,
int
padD
,
int
padH
,
int
padW
)
{
int
outD
=
outputSize
(
imgSizeD
,
ksizeD
,
padD
,
strideD
,
true
);
int
outH
=
outputSize
(
imgSizeH
,
ksizeH
,
padH
,
strideH
,
true
);
int
outW
=
outputSize
(
imgSizeW
,
ksizeW
,
padW
,
strideW
,
true
);
int
inWidth
=
imgSizeD
*
imgSizeH
*
imgSizeW
*
channels
;
MatrixPtr
input
=
CpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
false
);
MatrixPtr
inputGpu
=
GpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
true
);
int
outWidth
=
channels
*
outD
*
outH
*
outW
;
MatrixPtr
target
=
CpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
false
);
MatrixPtr
targetGpu
=
GpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
true
);
input
->
randomizeUniform
();
target
->
randomizeUniform
();
inputGpu
->
copyFrom
(
*
input
);
targetGpu
->
copyFrom
(
*
target
);
target
->
avgPool3DForward
(
*
input
,
channels
,
imgSizeD
,
imgSizeH
,
imgSizeW
,
outD
,
outH
,
outW
,
ksizeD
,
ksizeH
,
ksizeW
,
strideD
,
strideH
,
strideW
,
padD
,
padH
,
padW
);
targetGpu
->
avgPool3DForward
(
*
inputGpu
,
channels
,
imgSizeD
,
imgSizeH
,
imgSizeW
,
outD
,
outH
,
outW
,
ksizeD
,
ksizeH
,
ksizeW
,
strideD
,
strideH
,
strideW
,
padD
,
padH
,
padW
);
TensorCheckErr
(
*
target
,
*
targetGpu
);
MatrixPtr
inputGrad
=
CpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
false
);
MatrixPtr
inputGpuGrad
=
GpuMatrix
::
create
(
numSamples
,
inWidth
,
false
,
true
);
MatrixPtr
targetGrad
=
CpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
false
);
MatrixPtr
targetGpuGrad
=
GpuMatrix
::
create
(
numSamples
,
outWidth
,
false
,
true
);
inputGrad
->
randomizeUniform
();
targetGrad
->
randomizeUniform
();
inputGpuGrad
->
copyFrom
(
*
inputGrad
);
targetGpuGrad
->
copyFrom
(
*
targetGrad
);
inputGrad
->
avgPool3DBackward
(
*
targetGrad
,
imgSizeD
,
imgSizeH
,
imgSizeW
,
outD
,
outH
,
outW
,
ksizeD
,
ksizeH
,
ksizeW
,
strideD
,
strideH
,
strideW
,
padD
,
padH
,
padW
,
1.0
,
1.0
);
inputGpuGrad
->
avgPool3DBackward
(
*
targetGpuGrad
,
imgSizeD
,
imgSizeH
,
imgSizeW
,
outD
,
outH
,
outW
,
ksizeD
,
ksizeH
,
ksizeW
,
strideD
,
strideH
,
strideW
,
padD
,
padH
,
padW
,
1.0
,
1.0
);
TensorCheckErr
(
*
inputGrad
,
*
inputGpuGrad
);
}
// TODO(yi): I noticed many such blindly combinatorial tests in this
// file. They are no help to locate defects at all.
TEST
(
Matrix
,
Pool3DFwdBwd
)
{
for
(
auto
numSamples
:
{
1
,
3
})
{
for
(
auto
channels
:
{
3
})
{
for
(
auto
imgSizeD
:
{
9
,
16
})
{
for
(
auto
imgSizeH
:
{
9
,
32
})
{
for
(
auto
imgSizeW
:
{
9
,
32
})
{
for
(
auto
sizeX
:
{
3
})
{
for
(
auto
sizeY
:
{
3
})
{
for
(
auto
sizeZ
:
{
3
})
{
for
(
auto
sD
:
{
2
})
{
for
(
auto
sH
:
{
2
})
{
for
(
auto
sW
:
{
2
})
{
for
(
auto
pD
:
{
0
,
(
sizeZ
-
1
)
/
2
})
{
for
(
auto
pH
:
{
0
,
(
sizeY
-
1
)
/
2
})
{
for
(
auto
pW
:
{
0
,
(
sizeX
-
1
)
/
2
})
{
VLOG
(
3
)
<<
" numSamples="
<<
numSamples
<<
" channels="
<<
channels
<<
" imgSizeD="
<<
imgSizeD
<<
" imgSizeH="
<<
imgSizeH
<<
" imgSizeW="
<<
imgSizeW
<<
" sizeX="
<<
sizeX
<<
" sizeY="
<<
sizeY
<<
" sizeZ="
<<
sizeZ
<<
" strideD="
<<
sD
<<
" strideH="
<<
sH
<<
" strideW="
<<
sW
<<
" padingD="
<<
pD
<<
" padingH="
<<
pH
<<
" padingW="
<<
pW
;
testMaxPool3DFwdBwd
(
numSamples
,
channels
,
imgSizeD
,
imgSizeH
,
imgSizeW
,
sizeX
,
sizeY
,
sizeZ
,
sD
,
sH
,
sW
,
pD
,
pH
,
pW
);
testAvgPool3DFwdBwd
(
numSamples
,
channels
,
imgSizeD
,
imgSizeH
,
imgSizeW
,
sizeX
,
sizeY
,
sizeZ
,
sD
,
sH
,
sW
,
pD
,
pH
,
pW
);
}
}
}
}
}
}
}
}
}
}
}
}
}
}
// for (auto numSamples : {1, 3}) {
// for (auto channels : {1, 3}) {
// for (auto imgSizeD : {9,16}) {
// for (auto imgSizeH : {9, 32}) {
// for (auto imgSizeW : {9, 32}) {
// for (auto sizeX : {2, 3}) {
// for (auto sizeY : {2, 3}) {
// for (auto sizeZ : {2,3}){
// for (auto sD : {1, 2}) {
// for (auto sH : {1, 2}) {
// for (auto sW : {1, 2}) {
// for (auto pD : {0, (sizeZ - 1) / 2}){
// for (auto pH : {0, (sizeY - 1) / 2}) {
// for (auto pW : {0, (sizeX - 1) / 2}) {
// VLOG(3) << " numSamples=" << numSamples
// << " channels=" << channels
// << " imgSizeD=" << imgSizeD
// << " imgSizeH=" << imgSizeH
// << " imgSizeW=" << imgSizeW
// << " sizeX=" << sizeX
// << " sizeY=" << sizeY
// << " sizeZ=" << sizeZ
// << " strideD=" << sD
// << " strideH=" << sH
// << " strideW=" << sW
// << " padingD=" << pD
// << " padingH=" << pH
// << " padingW=" << pW;
//
// testMaxPool3DFwdBwd(numSamples,
// channels,
// imgSizeD,
// imgSizeH,
// imgSizeW,
// sizeX,
// sizeY,
// sizeZ,
// sD,
// sH,
// sW,
// pD,
// pH,
// pW);
// testAvgPool3DFwdBwd(numSamples,
// channels,
// imgSizeD,
// imgSizeH,
// imgSizeW,
// sizeX,
// sizeY,
// sizeZ,
// sD,
// sH,
// sW,
// pD,
// pH,
// pW);
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
// }
}
void
testMatrixCol2Vol
(
int
depth
,
int
height
,
int
width
)
{
int
channel
=
3
;
int
filterX
=
3
,
filterY
=
4
,
filterZ
=
5
;
...
...
@@ -1303,6 +1696,5 @@ TEST(Matrix, col2Vol) {
}
}
}
///////
#endif
proto/ModelConfig.proto
浏览文件 @
fcad0a3a
...
...
@@ -133,6 +133,12 @@ message PoolConfig {
// if not set, use padding
optional
uint32
padding_y
=
13
;
optional
uint32
size_z
=
14
[
default
=
1
];
optional
uint32
stride_z
=
15
[
default
=
1
];
optional
uint32
output_z
=
16
[
default
=
1
];
optional
uint32
img_size_z
=
17
[
default
=
1
];
optional
uint32
padding_z
=
18
[
default
=
1
];
}
message
SppConfig
{
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
fcad0a3a
...
...
@@ -938,6 +938,31 @@ class Pool(Cfg):
self
.
add_keys
(
locals
())
@
config_class
class
Pool3d
(
Cfg
):
def
__init__
(
self
,
pool_type
,
channels
,
size_x
,
size_y
=
None
,
size_z
=
None
,
start
=
None
,
stride
=
None
,
# 1 by defalut in protobuf
stride_y
=
None
,
stride_z
=
None
,
padding
=
None
,
# 0 by defalut in protobuf
padding_y
=
None
,
padding_z
=
None
):
self
.
add_keys
(
locals
())
self
.
filter_size_y
=
size_y
if
size_y
else
size_x
self
.
filter_size_z
=
size_z
if
size_z
else
size_x
self
.
padding_y
=
padding_y
if
padding_y
else
padding
self
.
padding_z
=
padding_z
if
padding_z
else
padding
self
.
stride_y
=
stride_y
if
stride_y
else
stride
self
.
stride_z
=
stride_z
if
stride_z
else
stride
@
config_class
class
SpatialPyramidPool
(
Cfg
):
def
__init__
(
self
,
pool_type
,
pyramid_height
,
channels
):
...
...
@@ -1253,6 +1278,45 @@ def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
pool_conf
.
stride_y
,
not
ceil_mode
)
def
parse_pool3d
(
pool
,
input_layer_name
,
pool_conf
,
ceil_mode
):
pool_conf
.
pool_type
=
pool
.
pool_type
config_assert
(
pool
.
pool_type
in
[
'max-projection'
,
'avg-projection'
],
"pool-type %s is not in "
"['max-projection', 'avg-projection']"
%
pool
.
pool_type
)
pool_conf
.
channels
=
pool
.
channels
pool_conf
.
size_x
=
pool
.
size_x
pool_conf
.
stride
=
pool
.
stride
pool_conf
.
padding
=
pool
.
padding
pool_conf
.
size_y
=
default
(
pool
.
size_y
,
pool_conf
.
size_x
)
pool_conf
.
size_z
=
default
(
pool
.
size_z
,
pool_conf
.
size_x
)
pool_conf
.
stride_y
=
default
(
pool
.
stride_y
,
pool_conf
.
stride
)
pool_conf
.
stride_z
=
default
(
pool
.
stride_z
,
pool_conf
.
stride
)
pool_conf
.
padding_y
=
default
(
pool
.
padding_y
,
pool_conf
.
padding
)
pool_conf
.
padding_z
=
default
(
pool
.
padding_z
,
pool_conf
.
padding
)
pool_conf
.
img_size
,
pool_conf
.
img_size_y
,
pool_conf
.
img_size_z
=
\
get_img3d_size
(
input_layer_name
,
pool
.
channels
)
config_assert
(
not
pool
.
start
,
"start is deprecated in pooling."
)
if
pool
.
padding
is
not
None
:
pool_conf
.
padding
=
pool
.
padding
pool_conf
.
padding_y
=
default
(
pool
.
padding_y
,
pool_conf
.
padding
)
pool_conf
.
padding_z
=
default
(
pool
.
padding_z
,
pool_conf
.
padding
)
pool_conf
.
output_x
=
cnn_output_size
(
pool_conf
.
img_size
,
pool_conf
.
size_x
,
pool_conf
.
padding
,
pool_conf
.
stride
,
not
ceil_mode
)
pool_conf
.
output_y
=
cnn_output_size
(
pool_conf
.
img_size_y
,
pool_conf
.
size_y
,
pool_conf
.
padding_y
,
pool_conf
.
stride_y
,
not
ceil_mode
)
pool_conf
.
output_z
=
cnn_output_size
(
pool_conf
.
img_size_z
,
pool_conf
.
size_z
,
pool_conf
.
padding_z
,
pool_conf
.
stride_z
,
not
ceil_mode
)
def
parse_spp
(
spp
,
input_layer_name
,
spp_conf
):
parse_image
(
spp
,
input_layer_name
,
spp_conf
.
image_conf
)
spp_conf
.
pool_type
=
spp
.
pool_type
...
...
@@ -1897,9 +1961,9 @@ class DataLayer(LayerBase):
def
__init__
(
self
,
name
,
size
,
depth
=
None
,
height
=
None
,
width
=
None
,
depth
=
None
,
device
=
None
):
super
(
DataLayer
,
self
).
__init__
(
name
,
'data'
,
size
,
inputs
=
[],
device
=
device
)
...
...
@@ -2215,6 +2279,35 @@ class PoolLayer(LayerBase):
pool_conf
.
channels
)
@
config_layer
(
'pool3d'
)
class
Pool3DLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
ceil_mode
=
True
,
**
xargs
):
super
(
Pool3DLayer
,
self
).
__init__
(
name
,
'pool3d'
,
0
,
inputs
=
inputs
,
**
xargs
)
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
pool_conf
=
self
.
config
.
inputs
[
input_index
].
pool_conf
parse_pool3d
(
self
.
inputs
[
input_index
].
pool
,
input_layer
.
name
,
pool_conf
,
ceil_mode
)
self
.
set_cnn_layer
(
name
,
pool_conf
.
output_z
,
pool_conf
.
output_y
,
pool_conf
.
output_x
,
pool_conf
.
channels
)
def
set_cnn_layer
(
self
,
input_layer_name
,
depth
,
height
,
width
,
channels
,
is_print
=
True
):
size
=
depth
*
height
*
width
*
channels
self
.
set_layer_size
(
size
)
self
.
set_layer_height_width
(
height
,
width
)
self
.
set_layer_depth
(
depth
)
if
is_print
:
print
(
"output for %s: c = %d, d = %d, h = %d, w = %d, size = %d"
%
(
input_layer_name
,
channels
,
depth
,
height
,
width
,
size
))
@
config_layer
(
'spp'
)
class
SpatialPyramidPoolLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
**
xargs
):
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
fcad0a3a
...
...
@@ -138,6 +138,7 @@ __all__ = [
'slice_projection'
,
'seq_slice_layer'
,
'kmax_sequence_score_layer'
,
'img_pool3d_layer'
,
'scale_shift_layer'
,
'img_conv3d_layer'
,
]
...
...
@@ -168,6 +169,7 @@ class LayerType(object):
EXCONVTRANS_LAYER
=
'exconvt'
CUDNNCONV_LAYER
=
'cudnn_conv'
POOL_LAYER
=
'pool'
POOL3D_LAYER
=
'pool3d'
BATCH_NORM_LAYER
=
'batch_norm'
NORM_LAYER
=
'norm'
SUM_TO_ONE_NORM_LAYER
=
'sum_to_one_norm'
...
...
@@ -900,7 +902,7 @@ def mixed_layer(size=0,
@
layer_support
()
def
data_layer
(
name
,
size
,
height
=
None
,
width
=
None
,
dep
th
=
None
,
def
data_layer
(
name
,
size
,
depth
=
None
,
height
=
None
,
wid
th
=
None
,
layer_attr
=
None
):
"""
Define DataLayer For NeuralNetwork.
...
...
@@ -938,8 +940,8 @@ def data_layer(name, size, height=None, width=None, depth=None,
num_filters
=
None
if
height
is
not
None
and
width
is
not
None
:
num_filters
=
size
/
(
width
*
height
*
depth
)
assert
num_filters
*
width
*
height
*
depth
==
size
,
\
"size=%s width=%s height=%s depth=%s"
%
(
size
,
width
,
height
,
depth
)
assert
num_filters
*
width
*
height
*
depth
==
size
,
\
"size=%s width=%s height=%s depth=%s"
%
(
size
,
width
,
height
,
depth
)
return
LayerOutput
(
name
,
LayerType
.
DATA
,
size
=
size
,
num_filters
=
num_filters
)
...
...
@@ -2663,6 +2665,146 @@ def img_pool_layer(input,
size
=
l
.
config
.
size
)
@
wrap_name_default
(
"pool3d"
)
@
layer_support
()
def
img_pool3d_layer
(
input
,
pool_size
,
name
=
None
,
num_channels
=
None
,
pool_type
=
None
,
stride
=
1
,
padding
=
0
,
layer_attr
=
None
,
pool_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
,
pool_size_z
=
None
,
stride_z
=
None
,
padding_z
=
None
,
ceil_mode
=
True
):
"""
Image pooling Layer.
The details of pooling layer, please refer ufldl's pooling_ .
.. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/
- ceil_mode=True:
.. math::
w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))
- ceil_mode=False:
.. math::
w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))
The example usage is:
.. code-block:: python
maxpool = img_pool3d_layer(input=conv,
pool_size=3,
num_channels=8,
stride=1,
padding=1,
pool_type=MaxPooling())
:param padding: pooling padding width.
:type padding: int|tuple|list
:param name: name of pooling layer
:type name: basestring.
:param input: layer's input
:type input: LayerOutput
:param pool_size: pooling window width
:type pool_size: int|tuple|list
:param num_channels: number of input channel.
:type num_channels: int
:param pool_type: pooling type. MaxPooling or AvgPooling. Default is
MaxPooling.
:type pool_type: BasePoolingType
:param stride: stride width of pooling.
:type stride: int|tuple|list
:param layer_attr: Extra Layer attribute.
:type layer_attr: ExtraLayerAttribute
:param ceil_mode: Wether to use ceil mode to calculate output height and with.
Defalut is True. If set false, Otherwise use floor.
:type ceil_mode: bool
:return: LayerOutput object.
:rtype: LayerOutput
"""
if
num_channels
is
None
:
assert
input
.
num_filters
is
not
None
num_channels
=
input
.
num_filters
if
pool_type
is
None
:
pool_type
=
MaxPooling
()
elif
isinstance
(
pool_type
,
AvgPooling
):
pool_type
.
name
=
'avg'
type_name
=
pool_type
.
name
+
'-projection'
\
if
(
isinstance
(
pool_type
,
AvgPooling
)
or
isinstance
(
pool_type
,
MaxPooling
))
\
else
pool_type
.
name
if
isinstance
(
pool_size
,
collections
.
Sequence
):
assert
len
(
pool_size
)
==
3
pool_size
,
pool_size_y
,
pool_size_z
=
pool_size
else
:
pool_size_y
=
pool_size
pool_size_z
=
pool_size
if
isinstance
(
stride
,
collections
.
Sequence
):
assert
len
(
stride
)
==
3
stride
,
stride_y
,
stride_z
=
stride
else
:
stride_y
=
stride
stride_z
=
stride
if
isinstance
(
padding
,
collections
.
Sequence
):
assert
len
(
padding
)
==
3
padding
,
padding_y
,
padding_y
=
padding
else
:
padding_y
=
padding
padding_z
=
padding
l
=
Layer
(
name
=
name
,
type
=
LayerType
.
POOL3D_LAYER
,
inputs
=
[
Input
(
input
.
name
,
pool
=
Pool3d
(
pool_type
=
type_name
,
channels
=
num_channels
,
size_x
=
pool_size
,
start
=
None
,
stride
=
stride
,
padding
=
padding
,
size_y
=
pool_size_y
,
stride_y
=
stride_y
,
padding_y
=
padding_y
,
size_z
=
pool_size_z
,
stride_z
=
stride_z
,
padding_z
=
padding_z
))
],
ceil_mode
=
ceil_mode
,
**
ExtraLayerAttribute
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
name
,
LayerType
.
POOL_LAYER
,
parents
=
[
input
],
num_filters
=
num_channels
,
size
=
l
.
config
.
size
)
@
wrap_name_default
(
"spp"
)
@
layer_support
()
def
spp_layer
(
input
,
...
...
python/paddle/trainer_config_helpers/tests/configs/file_list.sh
浏览文件 @
fcad0a3a
...
...
@@ -9,6 +9,7 @@ test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer
test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_layer
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
test_kmax_seq_socre_layer test_seq_select_layers test_scale_shift_layer
test_seq_slice_layer test_cross_entropy_over_beam test_conv3d_layer test_deconv3d_layer
)
test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer
test_conv3d_layer test_deconv3d_layer
)
export
whole_configs
=(
test_split_datasource
)
python/paddle/trainer_config_helpers/tests/configs/protostr/test_pooling3D_layer.protostr
0 → 100644
浏览文件 @
fcad0a3a
type: "nn"
layers {
name: "data_2d"
type: "data"
size: 6000
active_type: ""
height: 20
width: 10
}
layers {
name: "pool___2d"
type: "pool"
size: 840
active_type: ""
inputs {
input_layer_name: "data_2d"
pool_conf {
pool_type: "avg-projection"
channels: 30
size_x: 5
stride: 3
output_x: 4
img_size: 10
padding: 1
size_y: 5
stride_y: 3
output_y: 7
img_size_y: 20
padding_y: 1
}
}
height: 7
width: 4
}
layers {
name: "data_3d_1"
type: "data"
size: 60000
active_type: ""
height: 20
width: 10
depth: 10
}
layers {
name: "pool_3d_1"
type: "pool3d"
size: 3360
active_type: ""
inputs {
input_layer_name: "data_3d_1"
pool_conf {
pool_type: "avg-projection"
channels: 30
size_x: 5
stride: 3
output_x: 4
img_size: 10
padding: 1
size_y: 5
stride_y: 3
output_y: 7
img_size_y: 20
padding_y: 1
size_z: 5
stride_z: 3
output_z: 4
img_size_z: 10
padding_z: 1
}
}
height: 7
width: 4
depth: 4
}
layers {
name: "pool_3d_2"
type: "pool3d"
size: 3360
active_type: ""
inputs {
input_layer_name: "data_3d_1"
pool_conf {
pool_type: "max-projection"
channels: 30
size_x: 5
stride: 3
output_x: 4
img_size: 10
padding: 1
size_y: 5
stride_y: 3
output_y: 7
img_size_y: 20
padding_y: 1
size_z: 5
stride_z: 3
output_z: 4
img_size_z: 10
padding_z: 1
}
}
height: 7
width: 4
depth: 4
}
input_layer_names: "data_2d"
output_layer_names: "pool___2d"
output_layer_names: "pool_3d_1"
output_layer_names: "pool_3d_2"
sub_models {
name: "root"
layer_names: "data_2d"
layer_names: "pool___2d"
layer_names: "data_3d_1"
layer_names: "pool_3d_1"
layer_names: "pool_3d_2"
input_layer_names: "data_2d"
output_layer_names: "pool___2d"
output_layer_names: "pool_3d_1"
output_layer_names: "pool_3d_2"
is_recurrent_layer_group: false
}
python/paddle/trainer_config_helpers/tests/configs/test_pooling3D_layer.py
0 → 100644
浏览文件 @
fcad0a3a
from
paddle.trainer_config_helpers
import
*
settings
(
batch_size
=
100
,
learning_rate
=
1e-5
)
data_2d
=
data_layer
(
name
=
'data_2d'
,
size
=
6000
,
height
=
20
,
width
=
10
)
pool_2d
=
img_pool_layer
(
name
=
"pool___2d"
,
input
=
data_2d
,
num_channels
=
30
,
pool_size
=
5
,
stride
=
3
,
padding
=
1
,
pool_type
=
AvgPooling
())
outputs
(
pool_2d
)
data_3d
=
data_layer
(
name
=
'data_3d_1'
,
size
=
60000
,
depth
=
10
,
height
=
20
,
width
=
10
)
pool_3d_1
=
img_pool3d_layer
(
name
=
"pool_3d_1"
,
input
=
data_3d
,
num_channels
=
30
,
pool_size
=
5
,
stride
=
3
,
padding
=
1
,
pool_type
=
AvgPooling
())
outputs
(
pool_3d_1
)
pool_3d_2
=
img_pool3d_layer
(
name
=
"pool_3d_2"
,
input
=
data_3d
,
num_channels
=
30
,
pool_size
=
[
5
,
5
,
5
],
stride
=
[
3
,
3
,
3
],
padding
=
[
1
,
1
,
1
],
pool_type
=
MaxPooling
())
outputs
(
pool_3d_2
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录