Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
fb82692a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fb82692a
编写于
4月 26, 2020
作者:
X
xinyingxinying
提交者:
GitHub
4月 26, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add dcn on fcos head and backbone (#562)
* #add dcn on FCOS_head and backbone
上级
4a7cba60
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
320 addition
and
4 deletion
+320
-4
configs/anchor_free/README.md
configs/anchor_free/README.md
+1
-0
configs/anchor_free/fcos_dcn_r50_fpn_1x.yml
configs/anchor_free/fcos_dcn_r50_fpn_1x.yml
+183
-0
ppdet/modeling/anchor_heads/fcos_head.py
ppdet/modeling/anchor_heads/fcos_head.py
+7
-3
ppdet/modeling/ops.py
ppdet/modeling/ops.py
+129
-1
未找到文件。
configs/anchor_free/README.md
浏览文件 @
fb82692a
...
...
@@ -30,6 +30,7 @@
| CornerNet-Squeeze-dcn-mixup-cosine
*
| ResNet50-vd | 14 |
[
faster\_rcnn\_dcn\_r50\_vd\_fpn\_2x
](
https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar
)
| 38.2 | 40.05 |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/cornernet_squeeze_dcn_r50_vd_fpn_mixup_cosine.pdparams
)
|
| FCOS | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 39.8 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/fcos_r50_fpn_1x.pdparams
)
|
| FCOS+multiscale_train | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 42.0 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/fcos_r50_fpn_multiscale_2x.pdparams
)
|
| FCOS+DCN | ResNet50 | 2 |
[
ResNet50\_cos\_pretrained
](
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
)
| 44.4 | - |
[
下载链接
](
https://paddlemodels.bj.bcebos.com/object_detection/fcos_dcn_r50_fpn_1x.pdparams
)
|
**注意:**
...
...
configs/anchor_free/fcos_dcn_r50_fpn_1x.yml
0 → 100644
浏览文件 @
fb82692a
architecture
:
FCOS
max_iters
:
90000
use_gpu
:
true
snapshot_iter
:
5000
log_smooth_window
:
20
log_iter
:
20
save_dir
:
output
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric
:
COCO
weights
:
output/fcos_dcn_r50_fpn_1x/model_final
num_classes
:
81
FCOS
:
backbone
:
ResNet
fpn
:
FPN
fcos_head
:
FCOSHead
ResNet
:
norm_type
:
affine_channel
norm_decay
:
0.
depth
:
50
feature_maps
:
[
3
,
4
,
5
]
freeze_at
:
2
dcn_v2_stages
:
[
3
,
4
,
5
]
FPN
:
min_level
:
3
max_level
:
7
num_chan
:
256
use_c5
:
false
spatial_scale
:
[
0.03125
,
0.0625
,
0.125
]
has_extra_convs
:
true
FCOSHead
:
num_classes
:
81
fpn_stride
:
[
8
,
16
,
32
,
64
,
128
]
num_convs
:
4
norm_type
:
"
gn"
fcos_loss
:
FCOSLoss
norm_reg_targets
:
True
centerness_on_reg
:
True
use_dcn_in_tower
:
True
nms
:
MultiClassNMS
MultiClassNMS
:
score_threshold
:
0.025
nms_top_k
:
1000
keep_top_k
:
100
nms_threshold
:
0.6
background_label
:
-1
FCOSLoss
:
loss_alpha
:
0.25
loss_gamma
:
2.0
iou_loss_type
:
"
giou"
reg_weights
:
1.0
LearningRate
:
base_lr
:
0.01
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
60000
,
80000
]
-
!LinearWarmup
start_factor
:
0.3333333333333333
steps
:
500
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0001
type
:
L2
TrainReader
:
inputs_def
:
fields
:
[
'
image'
,
'
gt_bbox'
,
'
gt_class'
,
'
gt_score'
,
'
im_info'
]
dataset
:
!COCODataSet
image_dir
:
train2017
anno_path
:
annotations/instances_train2017.json
dataset_dir
:
dataset/coco
with_background
:
true
sample_transforms
:
-
!DecodeImage
to_rgb
:
true
-
!RandomFlipImage
prob
:
0.5
-
!NormalizeImage
is_channel_first
:
false
is_scale
:
true
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
-
!ResizeImage
target_size
:
800
max_size
:
1333
interp
:
1
use_cv2
:
true
-
!Permute
to_bgr
:
false
channel_first
:
true
batch_transforms
:
-
!PadBatch
pad_to_stride
:
128
use_padded_im_info
:
false
-
!Gt2FCOSTarget
object_sizes_boundary
:
[
64
,
128
,
256
,
512
]
center_sampling_radius
:
1.5
downsample_ratios
:
[
8
,
16
,
32
,
64
,
128
]
norm_reg_targets
:
True
batch_size
:
2
shuffle
:
true
worker_num
:
16
use_process
:
false
EvalReader
:
inputs_def
:
fields
:
[
'
image'
,
'
im_id'
,
'
im_shape'
,
'
im_info'
]
dataset
:
!COCODataSet
image_dir
:
val2017
anno_path
:
annotations/instances_val2017.json
dataset_dir
:
dataset/coco
with_background
:
false
sample_transforms
:
-
!DecodeImage
to_rgb
:
true
with_mixup
:
false
-
!NormalizeImage
is_channel_first
:
false
is_scale
:
true
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
-
!ResizeImage
target_size
:
800
max_size
:
1333
interp
:
1
use_cv2
:
true
-
!Permute
channel_first
:
true
to_bgr
:
false
batch_transforms
:
-
!PadBatch
pad_to_stride
:
128
use_padded_im_info
:
true
batch_size
:
8
shuffle
:
false
worker_num
:
2
use_process
:
false
TestReader
:
inputs_def
:
# set image_shape if needed
fields
:
[
'
image'
,
'
im_id'
,
'
im_shape'
,
'
im_info'
]
dataset
:
!ImageFolder
anno_path
:
annotations/instances_val2017.json
with_background
:
false
sample_transforms
:
-
!DecodeImage
to_rgb
:
true
with_mixup
:
false
-
!NormalizeImage
is_channel_first
:
false
is_scale
:
true
mean
:
[
0.485
,
0.456
,
0.406
]
std
:
[
0.229
,
0.224
,
0.225
]
-
!ResizeImage
interp
:
1
max_size
:
1333
target_size
:
800
use_cv2
:
true
-
!Permute
channel_first
:
true
to_bgr
:
false
batch_transforms
:
-
!PadBatch
pad_to_stride
:
128
use_padded_im_info
:
true
batch_size
:
1
shuffle
:
false
ppdet/modeling/anchor_heads/fcos_head.py
浏览文件 @
fb82692a
...
...
@@ -22,7 +22,7 @@ import paddle.fluid as fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.initializer
import
Normal
,
Constant
,
NumpyArrayInitializer
from
paddle.fluid.regularizer
import
L2Decay
from
ppdet.modeling.ops
import
ConvNorm
from
ppdet.modeling.ops
import
ConvNorm
,
DeformConvNorm
from
ppdet.modeling.ops
import
MultiClassNMS
from
ppdet.core.workspace
import
register
...
...
@@ -89,9 +89,13 @@ class FCOSHead(object):
subnet_blob_cls
=
features
subnet_blob_reg
=
features
in_channles
=
features
.
shape
[
1
]
if
self
.
use_dcn_in_tower
:
conv_norm
=
DeformConvNorm
else
:
conv_norm
=
ConvNorm
for
lvl
in
range
(
0
,
self
.
num_convs
):
conv_cls_name
=
'fcos_head_cls_tower_conv_{}'
.
format
(
lvl
)
subnet_blob_cls
=
ConvN
orm
(
subnet_blob_cls
=
conv_n
orm
(
input
=
subnet_blob_cls
,
num_filters
=
in_channles
,
filter_size
=
3
,
...
...
@@ -104,7 +108,7 @@ class FCOSHead(object):
norm_name
=
conv_cls_name
+
"_norm"
,
name
=
conv_cls_name
)
conv_reg_name
=
'fcos_head_reg_tower_conv_{}'
.
format
(
lvl
)
subnet_blob_reg
=
ConvN
orm
(
subnet_blob_reg
=
conv_n
orm
(
input
=
subnet_blob_reg
,
num_filters
=
in_channles
,
filter_size
=
3
,
...
...
ppdet/modeling/ops.py
浏览文件 @
fb82692a
...
...
@@ -27,11 +27,139 @@ __all__ = [
'AnchorGenerator'
,
'DropBlock'
,
'RPNTargetAssign'
,
'GenerateProposals'
,
'MultiClassNMS'
,
'BBoxAssigner'
,
'MaskAssigner'
,
'RoIAlign'
,
'RoIPool'
,
'MultiBoxHead'
,
'SSDLiteMultiBoxHead'
,
'SSDOutputDecoder'
,
'RetinaTargetAssign'
,
'RetinaOutputDecoder'
,
'ConvNorm'
,
'RetinaTargetAssign'
,
'RetinaOutputDecoder'
,
'ConvNorm'
,
'DeformConvNorm'
,
'MultiClassSoftNMS'
,
'LibraBBoxAssigner'
]
def
_conv_offset
(
input
,
filter_size
,
stride
,
padding
,
act
=
None
,
name
=
None
):
out_channel
=
filter_size
*
filter_size
*
3
out
=
fluid
.
layers
.
conv2d
(
input
,
num_filters
=
out_channel
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
),
name
=
name
+
".w_0"
),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
),
name
=
name
+
".b_0"
),
act
=
act
,
name
=
name
)
return
out
def
DeformConvNorm
(
input
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
norm_decay
=
0.
,
norm_type
=
'affine_channel'
,
norm_groups
=
32
,
dilation
=
1
,
lr_scale
=
1
,
freeze_norm
=
False
,
act
=
None
,
norm_name
=
None
,
initializer
=
None
,
bias_attr
=
False
,
name
=
None
):
if
bias_attr
:
bias_para
=
ParamAttr
(
name
=
name
+
"_bias"
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0
),
learning_rate
=
lr_scale
*
2
)
else
:
bias_para
=
False
offset_mask
=
_conv_offset
(
input
=
input
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
act
=
None
,
name
=
name
+
"_conv_offset"
)
offset_channel
=
filter_size
**
2
*
2
mask_channel
=
filter_size
**
2
offset
,
mask
=
fluid
.
layers
.
split
(
input
=
offset_mask
,
num_or_sections
=
[
offset_channel
,
mask_channel
],
dim
=
1
)
mask
=
fluid
.
layers
.
sigmoid
(
mask
)
conv
=
fluid
.
layers
.
deformable_conv
(
input
=
input
,
offset
=
offset
,
mask
=
mask
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
*
dilation
,
dilation
=
dilation
,
groups
=
groups
,
deformable_groups
=
1
,
im2col_step
=
1
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
,
initializer
=
initializer
,
learning_rate
=
lr_scale
),
bias_attr
=
bias_para
,
name
=
name
+
".conv2d.output.1"
)
norm_lr
=
0.
if
freeze_norm
else
1.
pattr
=
ParamAttr
(
name
=
norm_name
+
'_scale'
,
learning_rate
=
norm_lr
*
lr_scale
,
regularizer
=
L2Decay
(
norm_decay
))
battr
=
ParamAttr
(
name
=
norm_name
+
'_offset'
,
learning_rate
=
norm_lr
*
lr_scale
,
regularizer
=
L2Decay
(
norm_decay
))
if
norm_type
in
[
'bn'
,
'sync_bn'
]:
global_stats
=
True
if
freeze_norm
else
False
out
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
,
name
=
norm_name
+
'.output.1'
,
param_attr
=
pattr
,
bias_attr
=
battr
,
moving_mean_name
=
norm_name
+
'_mean'
,
moving_variance_name
=
norm_name
+
'_variance'
,
use_global_stats
=
global_stats
)
scale
=
fluid
.
framework
.
_get_var
(
pattr
.
name
)
bias
=
fluid
.
framework
.
_get_var
(
battr
.
name
)
elif
norm_type
==
'gn'
:
out
=
fluid
.
layers
.
group_norm
(
input
=
conv
,
act
=
act
,
name
=
norm_name
+
'.output.1'
,
groups
=
norm_groups
,
param_attr
=
pattr
,
bias_attr
=
battr
)
scale
=
fluid
.
framework
.
_get_var
(
pattr
.
name
)
bias
=
fluid
.
framework
.
_get_var
(
battr
.
name
)
elif
norm_type
==
'affine_channel'
:
scale
=
fluid
.
layers
.
create_parameter
(
shape
=
[
conv
.
shape
[
1
]],
dtype
=
conv
.
dtype
,
attr
=
pattr
,
default_initializer
=
fluid
.
initializer
.
Constant
(
1.
))
bias
=
fluid
.
layers
.
create_parameter
(
shape
=
[
conv
.
shape
[
1
]],
dtype
=
conv
.
dtype
,
attr
=
battr
,
default_initializer
=
fluid
.
initializer
.
Constant
(
0.
))
out
=
fluid
.
layers
.
affine_channel
(
x
=
conv
,
scale
=
scale
,
bias
=
bias
,
act
=
act
)
if
freeze_norm
:
scale
.
stop_gradient
=
True
bias
.
stop_gradient
=
True
return
out
def
ConvNorm
(
input
,
num_filters
,
filter_size
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录