Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
fb7d8d88
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fb7d8d88
编写于
8月 17, 2017
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/develop' into remove-flag
上级
07d16e3e
62aedcee
变更
23
隐藏空白更改
内联
并排
Showing
23 changed file
with
370 addition
and
285 deletion
+370
-285
paddle/framework/backward.cc
paddle/framework/backward.cc
+20
-22
paddle/framework/backward.h
paddle/framework/backward.h
+1
-1
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+1
-2
paddle/framework/op_registry.cc
paddle/framework/op_registry.cc
+5
-6
paddle/framework/op_registry.h
paddle/framework/op_registry.h
+3
-3
paddle/framework/op_registry_test.cc
paddle/framework/op_registry_test.cc
+2
-4
paddle/framework/pybind.cc
paddle/framework/pybind.cc
+56
-85
paddle/memory/detail/system_allocator.cc
paddle/memory/detail/system_allocator.cc
+1
-1
paddle/memory/memory.cc
paddle/memory/memory.cc
+41
-19
paddle/operators/gather_test.cc
paddle/operators/gather_test.cc
+4
-0
paddle/operators/mean_op.h
paddle/operators/mean_op.h
+2
-1
paddle/operators/net_op.h
paddle/operators/net_op.h
+17
-13
paddle/operators/net_op_test.cc
paddle/operators/net_op_test.cc
+10
-13
paddle/operators/recurrent_op.h
paddle/operators/recurrent_op.h
+16
-10
paddle/operators/scatter_test.cc
paddle/operators/scatter_test.cc
+4
-0
paddle/operators/sigmoid_op.cc
paddle/operators/sigmoid_op.cc
+2
-1
paddle/operators/sigmoid_op.h
paddle/operators/sigmoid_op.h
+1
-1
paddle/scripts/docker/build.sh
paddle/scripts/docker/build.sh
+2
-1
python/paddle/v2/framework/tests/CMakeLists.txt
python/paddle/v2/framework/tests/CMakeLists.txt
+1
-0
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+117
-98
python/paddle/v2/framework/tests/test_gradient_checker.py
python/paddle/v2/framework/tests/test_gradient_checker.py
+43
-0
python/paddle/v2/framework/tests/test_mean_op.py
python/paddle/v2/framework/tests/test_mean_op.py
+8
-0
python/paddle/v2/framework/tests/test_sigmoid_op.py
python/paddle/v2/framework/tests/test_sigmoid_op.py
+13
-4
未找到文件。
paddle/framework/backward.cc
浏览文件 @
fb7d8d88
...
...
@@ -15,6 +15,8 @@
#include "paddle/framework/backward.h"
#include <list>
#include <memory>
#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
...
...
@@ -43,11 +45,11 @@ static bool AllInSet(
return
all_in_set
;
}
static
std
::
shared
_ptr
<
OperatorBase
>
NOP
()
{
auto
net_op
=
std
::
make_shared
<
operators
::
NetOp
>
();
static
std
::
unique
_ptr
<
OperatorBase
>
NOP
()
{
auto
net_op
=
new
operators
::
NetOp
();
net_op
->
SetType
(
"@NOP@"
);
net_op
->
CompleteAddOp
();
return
net_op
;
return
std
::
unique_ptr
<
OperatorBase
>
(
net_op
)
;
}
// Get backward operator from a forward operator, a recursive implementation.
...
...
@@ -62,11 +64,7 @@ static std::shared_ptr<OperatorBase> NOP() {
// operator, in a complex situation, it maybe a NetOp.
//
// See Backward.h for details
static
std
::
shared_ptr
<
OperatorBase
>
BackwardRecursive
(
const
OperatorBase
&
forwardOp
,
std
::
unordered_set
<
std
::
string
>&
no_grad_names
,
size_t
&
uniq_id
);
std
::
shared_ptr
<
OperatorBase
>
BackwardRecursive
(
static
std
::
unique_ptr
<
OperatorBase
>
BackwardRecursive
(
const
OperatorBase
&
forwardOp
,
std
::
unordered_set
<
std
::
string
>&
no_grad_names
,
size_t
&
uniq_id
)
{
// If all input gradients of forwarding operator do not need to calculate,
...
...
@@ -91,7 +89,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
}
// Returned gradient network
auto
net
=
std
::
make_shared
<
operators
::
NetOp
>
(
);
auto
net
=
std
::
unique_ptr
<
operators
::
NetOp
>
(
new
operators
::
NetOp
()
);
if
(
forwardOp
.
IsNetOp
())
{
// Because forwardOp is a net op, it can static_cast.
...
...
@@ -105,14 +103,14 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// reversely travel forwardNet and collect all duplicate outputs.
for
(
auto
it
=
forwardNet
.
ops_
.
rbegin
();
it
!=
forwardNet
.
ops_
.
rend
();
++
it
,
++
local_op_id
)
{
auto
fwd
=
*
it
;
auto
&
fwd
=
*
it
;
auto
bwd
=
BackwardRecursive
(
*
fwd
,
no_grad_names
,
uniq_id
);
net
->
AddOp
(
bwd
);
ForEachVarName
(
bwd
->
Outputs
(),
[
&
dup_output_ops
,
local_op_id
](
const
std
::
string
&
out
)
{
dup_output_ops
[
out
].
emplace_back
(
local_op_id
);
return
false
;
});
net
->
AddOp
(
std
::
move
(
bwd
));
}
// Get unique ID for this method.
auto
uid
=
uniq_id
++
;
...
...
@@ -122,7 +120,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// to handle this case. For each duplicate output, rename it to an alias
// (original name with a offset), append an `add` op for its operator,
// and finally sum all the alias variable to the final output variable y.
using
Pos
=
std
::
pair
<
size_t
,
std
::
shared
_ptr
<
OperatorBase
>>
;
using
Pos
=
std
::
pair
<
size_t
,
std
::
unique
_ptr
<
OperatorBase
>>
;
std
::
list
<
Pos
>
insert_position
;
for
(
auto
&
dup_output_op
:
dup_output_ops
)
{
const
std
::
string
&
name
=
dup_output_op
.
first
;
...
...
@@ -150,13 +148,13 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
[](
const
Pos
&
l
,
const
Pos
&
r
)
{
return
l
.
first
>
r
.
first
;
});
for
(
auto
&
pos
:
insert_position
)
{
net
->
InsertOp
(
pos
.
first
+
1
,
pos
.
second
);
net
->
InsertOp
(
pos
.
first
+
1
,
std
::
move
(
pos
.
second
)
);
}
}
else
{
std
::
shared_ptr
<
OperatorBase
>
grad_op
=
OpRegistry
::
CreateGradOp
(
forwardOp
);
std
::
unique_ptr
<
OperatorBase
>
grad_op
(
OpRegistry
::
CreateGradOp
(
forwardOp
)
);
ForEachVarName
(
grad_op
->
Inputs
(),
[
&
no_grad_names
,
&
net
,
grad_op
](
const
std
::
string
&
grad_input
)
{
ForEachVarName
(
grad_op
->
Inputs
(),
[
&
no_grad_names
,
&
net
,
&
grad_op
](
const
std
::
string
&
grad_input
)
{
if
(
no_grad_names
.
count
(
grad_input
))
{
// +1 for \0
std
::
string
prefix
=
grad_input
.
substr
(
...
...
@@ -190,23 +188,23 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
const
auto
&
stepnet_op
=
*
static_cast
<
const
OperatorBase
*>
(
&
rnnop
.
stepnet
());
// create stepnet's gradient op
auto
grad_stepnet
=
BackwardRecursive
(
stepnet_op
,
no_grad_names
,
uniq_id
);
rnn_grad_op
->
set_stepnet
(
std
::
static_pointer_cast
<
operators
::
NetOp
>
(
grad_stepnet
));
BackwardRecursive
(
stepnet_op
,
no_grad_names
,
uniq_id
));
}
if
(
net
->
ops_
.
empty
())
{
// Current no aux op is added to network
return
grad_op
;
}
net
->
AddOp
(
grad_op
);
net
->
AddOp
(
std
::
move
(
grad_op
)
);
}
net
->
SetType
(
"@GENERATED_BACKWARD@"
);
net
->
CompleteAddOp
();
return
net
;
}
// namespace framework
return
std
::
unique_ptr
<
OperatorBase
>
(
static_cast
<
OperatorBase
*>
(
net
.
release
()));
}
// See header for comments
std
::
shared
_ptr
<
OperatorBase
>
Backward
(
std
::
unique
_ptr
<
OperatorBase
>
Backward
(
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>&
no_grad_vars
)
{
std
::
unordered_set
<
std
::
string
>
no_grad_names
;
...
...
paddle/framework/backward.h
浏览文件 @
fb7d8d88
...
...
@@ -20,7 +20,7 @@ namespace framework {
// Create the backward operator from a forward operator.
// TODO(yuyang18): Add more API reference comment.
extern
std
::
shared
_ptr
<
OperatorBase
>
Backward
(
extern
std
::
unique
_ptr
<
OperatorBase
>
Backward
(
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>&
no_grad_vars
);
}
// namespace framework
...
...
paddle/framework/backward_test.cc
浏览文件 @
fb7d8d88
...
...
@@ -180,8 +180,7 @@ TEST(Backward, simple_op_not_need_grad) {
auto
no_input_gop
=
f
::
Backward
(
*
fwd
,
{
"x"
,
"b"
});
ASSERT_NE
(
no_input_gop
,
nullptr
);
ASSERT_TRUE
(
no_input_gop
->
IsNetOp
());
ASSERT_EQ
(
0UL
,
std
::
static_pointer_cast
<
ops
::
NetOp
>
(
no_input_gop
)
->
ops_
.
size
());
ASSERT_EQ
(
0UL
,
static_cast
<
ops
::
NetOp
*>
(
no_input_gop
.
get
())
->
ops_
.
size
());
}
TEST
(
Backward
,
net_fc_backward_normal
)
{
...
...
paddle/framework/op_registry.cc
浏览文件 @
fb7d8d88
...
...
@@ -19,7 +19,7 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
std
::
shared
_ptr
<
OperatorBase
>
OpRegistry
::
CreateOp
(
const
std
::
string
&
type
,
std
::
unique
_ptr
<
OperatorBase
>
OpRegistry
::
CreateOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
AttributeMap
attrs
)
{
...
...
@@ -28,10 +28,10 @@ std::shared_ptr<OperatorBase> OpRegistry::CreateOp(const std::string& type,
"Operator '%s' has not been registered."
,
type
);
it
->
second
.
checker_
->
Check
(
attrs
);
auto
op
=
it
->
second
.
creator_
(
type
,
inputs
,
outputs
,
attrs
);
return
std
::
shared
_ptr
<
OperatorBase
>
(
op
);
return
std
::
unique
_ptr
<
OperatorBase
>
(
op
);
}
std
::
shared
_ptr
<
OperatorBase
>
OpRegistry
::
CreateOp
(
const
OpDesc
&
op_desc
)
{
std
::
unique
_ptr
<
OperatorBase
>
OpRegistry
::
CreateOp
(
const
OpDesc
&
op_desc
)
{
VarNameMap
inputs
=
ConvertOpDescVarsToVarNameMap
(
op_desc
.
inputs
());
VarNameMap
outputs
=
ConvertOpDescVarsToVarNameMap
(
op_desc
.
outputs
());
AttributeMap
attrs
;
...
...
@@ -55,10 +55,9 @@ OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap(
return
ret_val
;
}
std
::
shared
_ptr
<
OperatorBase
>
OpRegistry
::
CreateGradOp
(
const
OperatorBase
&
op
)
{
std
::
unique
_ptr
<
OperatorBase
>
OpRegistry
::
CreateGradOp
(
const
OperatorBase
&
op
)
{
PADDLE_ENFORCE
(
!
op
.
IsNetOp
(),
"Use framework::Backward to get backward ops"
);
std
::
shared_ptr
<
OperatorBase
>
grad_op
(
BuildGradOp
(
&
op
));
return
grad_op
;
return
std
::
unique_ptr
<
OperatorBase
>
(
BuildGradOp
(
&
op
));
}
}
// namespace framework
...
...
paddle/framework/op_registry.h
浏览文件 @
fb7d8d88
...
...
@@ -77,17 +77,17 @@ class OpRegistry {
}
}
static
std
::
shared
_ptr
<
OperatorBase
>
CreateOp
(
const
std
::
string
&
type
,
static
std
::
unique
_ptr
<
OperatorBase
>
CreateOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
AttributeMap
attrs
);
static
std
::
shared
_ptr
<
OperatorBase
>
CreateOp
(
const
OpDesc
&
op_desc
);
static
std
::
unique
_ptr
<
OperatorBase
>
CreateOp
(
const
OpDesc
&
op_desc
);
static
VarNameMap
ConvertOpDescVarsToVarNameMap
(
const
google
::
protobuf
::
RepeatedPtrField
<
OpDesc
::
Var
>&
op_desc_vars
);
static
std
::
shared
_ptr
<
OperatorBase
>
CreateGradOp
(
const
OperatorBase
&
op
);
static
std
::
unique
_ptr
<
OperatorBase
>
CreateGradOp
(
const
OperatorBase
&
op
);
static
std
::
unordered_map
<
std
::
string
,
const
OpInfo
>&
op_info_map
()
{
static
std
::
unordered_map
<
std
::
string
,
const
OpInfo
>
op_info_map_
;
...
...
paddle/framework/op_registry_test.cc
浏览文件 @
fb7d8d88
...
...
@@ -76,8 +76,7 @@ TEST(OpRegistry, CreateOp) {
attr
->
set_type
(
paddle
::
framework
::
AttrType
::
FLOAT
);
attr
->
set_f
(
scale
);
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
paddle
::
framework
::
Scope
scope
;
paddle
::
platform
::
CPUDeviceContext
dev_ctx
;
op
->
Run
(
scope
,
dev_ctx
);
...
...
@@ -118,8 +117,7 @@ TEST(OpRegistry, DefaultValue) {
ASSERT_TRUE
(
op_desc
.
IsInitialized
());
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
auto
op
=
paddle
::
framework
::
OpRegistry
::
CreateOp
(
op_desc
);
paddle
::
framework
::
Scope
scope
;
paddle
::
platform
::
CPUDeviceContext
dev_ctx
;
op
->
Run
(
scope
,
dev_ctx
);
...
...
paddle/framework/pybind.cc
浏览文件 @
fb7d8d88
...
...
@@ -48,29 +48,6 @@ namespace framework {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
ClassType
>
void
ExposeOperator
(
ClassType
&
m
)
{
m
.
def
(
"infer_shape"
,
&
ClassType
::
type
::
InferShape
)
.
def
(
"run"
,
&
ClassType
::
type
::
Run
)
.
def
(
"type"
,
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
string
{
return
op
.
Type
();
})
.
def
(
"outputs"
,
[](
const
typename
ClassType
::
type
&
op
)
->
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
{
return
op
.
Outputs
();
})
.
def
(
"inputs"
,
[](
const
typename
ClassType
::
type
&
op
)
{
return
op
.
Inputs
();
})
.
def
(
"__str__"
,
&
ClassType
::
type
::
DebugString
)
.
def
(
"no_intermediate_outputs"
,
[](
const
typename
ClassType
::
type
&
op
)
{
return
op
.
OutputVars
(
false
);
})
.
def
(
"support_gpu"
,
&
ClassType
::
type
::
SupportGPU
);
}
static
size_t
UniqueIntegerGenerator
()
{
static
std
::
atomic
<
size_t
>
generator
;
return
generator
.
fetch_add
(
1
);
...
...
@@ -207,75 +184,69 @@ All parameter, weight, gradient are variables in Paddle.
.
def
(
py
::
init
<>
())
.
def
(
"__str__"
,
string
::
to_string
<
const
platform
::
CPUPlace
&>
);
py
::
class_
<
OperatorBase
,
std
::
shared_ptr
<
OperatorBase
>>
operator_base
(
m
,
"Operator"
);
operator_base
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
return
OpRegistry
::
CreateOp
(
desc
);
});
operator_base
.
def
(
"backward"
,
[](
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_vars
)
{
return
Backward
(
forwardOp
,
no_grad_vars
);
});
ExposeOperator
(
operator_base
);
py
::
class_
<
operators
::
NetOp
,
std
::
shared_ptr
<
operators
::
NetOp
>>
net
(
m
,
"Net"
);
net
.
def_static
(
"create"
,
[]()
->
std
::
shared_ptr
<
operators
::
NetOp
>
{
auto
retv
=
std
::
make_shared
<
operators
::
NetOp
>
();
retv
->
SetType
(
"plain_net"
);
return
retv
;
})
.
def
(
"add_op"
,
&
operators
::
NetOp
::
AddOp
)
.
def
(
"add_op"
,
[](
operators
::
NetOp
&
self
,
const
std
::
shared_ptr
<
operators
::
NetOp
>
&
net
)
->
void
{
self
.
AddOp
(
std
::
static_pointer_cast
<
OperatorBase
>
(
net
));
})
.
def
(
"add_op"
,
[](
operators
::
NetOp
&
self
,
const
std
::
shared_ptr
<
operators
::
RecurrentOp
>
&
rnn
)
->
void
{
self
.
AddOp
(
std
::
static_pointer_cast
<
OperatorBase
>
(
rnn
));
py
::
class_
<
OperatorBase
>
(
m
,
"Operator"
)
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
return
OpRegistry
::
CreateOp
(
desc
);
})
.
def
(
"backward"
,
[](
const
OperatorBase
&
forwardOp
,
const
std
::
unordered_set
<
std
::
string
>
&
no_grad_vars
)
{
return
Backward
(
forwardOp
,
no_grad_vars
).
release
();
})
.
def
(
"infer_shape"
,
&
OperatorBase
::
InferShape
)
.
def
(
"run"
,
&
OperatorBase
::
Run
)
.
def
(
"type"
,
[](
const
OperatorBase
&
op
)
->
std
::
string
{
return
op
.
Type
();
})
.
def
(
"outputs"
,
[](
const
OperatorBase
&
op
)
->
std
::
map
<
std
::
string
,
std
::
vector
<
std
::
string
>>
{
return
op
.
Outputs
();
})
.
def
(
"inputs"
,
[](
const
OperatorBase
&
op
)
{
return
op
.
Inputs
();
})
.
def
(
"__str__"
,
&
OperatorBase
::
DebugString
)
.
def
(
"no_intermediate_outputs"
,
[](
const
OperatorBase
&
op
)
{
return
op
.
OutputVars
(
false
);
})
.
def
(
"support_gpu"
,
&
OperatorBase
::
SupportGPU
);
py
::
class_
<
operators
::
NetOp
,
OperatorBase
>
(
m
,
"Net"
)
.
def_static
(
"create"
,
[]()
->
operators
::
NetOp
*
{
auto
*
retv
=
new
operators
::
NetOp
;
retv
->
SetType
(
"plain_net"
);
return
retv
;
})
.
def
(
"add_op"
,
[](
operators
::
NetOp
&
self
,
const
OperatorBase
&
op
)
{
self
.
AddOp
(
op
);
})
.
def
(
"complete_add_op"
,
&
operators
::
NetOp
::
CompleteAddOp
)
.
def
(
"complete_add_op"
,
[](
std
::
shared_ptr
<
operators
::
NetOp
>
&
self
)
{
self
->
CompleteAddOp
();
});
ExposeOperator
(
net
);
// recurrent_op
py
::
class_
<
operators
::
RecurrentOp
,
std
::
shared_ptr
<
operators
::
RecurrentOp
>>
rnn
(
m
,
"RecurrentOp"
);
rnn
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
->
std
::
shared_ptr
<
operators
::
RecurrentOp
>
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
auto
rnn_op
=
OpRegistry
::
CreateOp
(
desc
);
return
std
::
dynamic_pointer_cast
<
operators
::
RecurrentOp
>
(
rnn_op
);
})
.
def
(
"set_stepnet"
,
[](
operators
::
RecurrentOp
&
self
,
const
std
::
shared_ptr
<
operators
::
NetOp
>
&
net
)
->
void
{
self
.
set_stepnet
(
net
);
});
ExposeOperator
(
rnn
);
py
::
class_
<
operators
::
RecurrentOp
,
OperatorBase
>
(
m
,
"RecurrentOp"
)
.
def_static
(
"create"
,
[](
py
::
bytes
protobin
)
->
operators
::
RecurrentOp
*
{
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
auto
rnn_op
=
OpRegistry
::
CreateOp
(
desc
);
return
static_cast
<
operators
::
RecurrentOp
*>
(
rnn_op
.
release
());
})
.
def
(
"set_stepnet"
,
[](
operators
::
RecurrentOp
&
self
,
const
operators
::
NetOp
&
net
)
->
void
{
self
.
set_stepnet
(
net
.
Clone
());
});
m
.
def
(
"unique_integer"
,
UniqueIntegerGenerator
);
...
...
paddle/memory/detail/system_allocator.cc
浏览文件 @
fb7d8d88
...
...
@@ -27,7 +27,7 @@ limitations under the License. */
// between host and device. Allocates too much would reduce the amount
// of memory available to the system for paging. So, by default, we
// should set false to use_pinned_memory.
DEFINE_bool
(
use_pinned_memory
,
fals
e
,
"If set, allocate cpu pinned memory."
);
DEFINE_bool
(
use_pinned_memory
,
tru
e
,
"If set, allocate cpu pinned memory."
);
namespace
paddle
{
namespace
memory
{
...
...
paddle/memory/memory.cc
浏览文件 @
fb7d8d88
...
...
@@ -13,22 +13,33 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/memory/memory.h"
#include <algorithm> // for transform
#include <cstring> // for memcpy
#include <memory> // for unique_ptr
#include <mutex> // for call_once
#include "paddle/memory/detail/buddy_allocator.h"
#include "paddle/memory/detail/system_allocator.h"
#include <cstring> // for memcpy
namespace
paddle
{
namespace
memory
{
detail
::
BuddyAllocator
*
GetCPUBuddyAllocator
()
{
static
detail
::
BuddyAllocator
*
a
=
nullptr
;
if
(
a
==
nullptr
)
{
a
=
new
detail
::
BuddyAllocator
(
new
detail
::
CPUAllocator
,
platform
::
CpuMinChunkSize
(),
platform
::
CpuMaxChunkSize
());
}
return
a
;
using
BuddyAllocator
=
detail
::
BuddyAllocator
;
std
::
once_flag
cpu_allocator_flag
;
std
::
once_flag
gpu_allocator_flag
;
BuddyAllocator
*
GetCPUBuddyAllocator
()
{
static
std
::
unique_ptr
<
BuddyAllocator
>
a
{
nullptr
};
std
::
call_once
(
cpu_allocator_flag
,
[
&
]()
{
a
.
reset
(
new
BuddyAllocator
(
new
detail
::
CPUAllocator
,
platform
::
CpuMinChunkSize
(),
platform
::
CpuMaxChunkSize
()));
});
return
a
.
get
();
}
template
<
>
...
...
@@ -48,20 +59,31 @@ size_t Used<platform::CPUPlace>(platform::CPUPlace place) {
#ifndef PADDLE_ONLY_CPU
detail
::
BuddyAllocator
*
GetGPUBuddyAllocator
(
int
gpu_id
)
{
static
detail
::
BuddyAllocator
**
as
=
NULL
;
if
(
as
==
NULL
)
{
BuddyAllocator
*
GetGPUBuddyAllocator
(
int
gpu_id
)
{
using
BuddyAllocVec
=
std
::
vector
<
BuddyAllocator
*>
;
static
std
::
unique_ptr
<
BuddyAllocVec
,
void
(
*
)(
BuddyAllocVec
*
p
)
>
as
{
new
BuddyAllocVec
,
[](
BuddyAllocVec
*
p
)
{
std
::
for_each
(
p
->
begin
(),
p
->
end
(),
[](
BuddyAllocator
*
p
)
{
delete
p
;
});
}};
// GPU buddy allocators
auto
&
allocators
=
*
as
.
get
();
// GPU buddy allocator initialization
std
::
call_once
(
gpu_allocator_flag
,
[
&
]()
{
int
gpu_num
=
platform
::
GetDeviceCount
();
a
s
=
new
detail
::
BuddyAllocator
*
[
gpu_num
]
;
a
llocators
.
reserve
(
gpu_num
)
;
for
(
int
gpu
=
0
;
gpu
<
gpu_num
;
gpu
++
)
{
platform
::
SetDeviceId
(
gpu
);
a
s
[
gpu
]
=
new
detail
::
BuddyAllocator
(
new
detail
::
GPUAllocator
,
platform
::
GpuMinChunkSize
(),
platform
::
GpuMaxChunkSize
(
));
a
llocators
.
emplace_back
(
new
BuddyAllocator
(
new
detail
::
GPUAllocator
,
platform
::
GpuMinChunkSize
(),
platform
::
GpuMaxChunkSize
()
));
}
}
});
platform
::
SetDeviceId
(
gpu_id
);
return
as
[
gpu_id
];
return
a
llocator
s
[
gpu_id
];
}
template
<
>
...
...
paddle/operators/gather_test.cc
浏览文件 @
fb7d8d88
...
...
@@ -45,4 +45,8 @@ TEST(Gather, GatherData) {
for
(
int
i
=
0
;
i
<
4
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
+
4
);
for
(
int
i
=
4
;
i
<
8
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
i
-
4
);
delete
src
;
delete
index
;
delete
output
;
}
paddle/operators/mean_op.h
浏览文件 @
fb7d8d88
...
...
@@ -55,9 +55,10 @@ class MeanGradKernel : public framework::OpKernel {
IG
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
ig_size
=
(
T
)
framework
::
product
(
IG
->
dims
());
Eigen
::
DSizes
<
int
,
1
>
bcast
(
ig_size
);
EigenVector
<
T
>::
Flatten
(
*
IG
).
device
(
context
.
GetEigenDevice
<
Place
>
())
=
EigenScalar
<
T
>::
From
(
*
OG
)
/
ig_size
;
(
EigenVector
<
T
>::
From
(
*
OG
)
/
ig_size
).
broadcast
(
bcast
)
;
}
};
...
...
paddle/operators/net_op.h
浏览文件 @
fb7d8d88
...
...
@@ -41,15 +41,13 @@ class NetOp : public framework::OperatorBase {
NetOp
(
const
std
::
string
&
type
,
const
VarNameMap
&
inputs
,
const
VarNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
);
NetOp
(
const
NetOp
&
o
)
:
framework
::
OperatorBase
(
static_cast
<
const
framework
::
OperatorBase
&>
(
o
))
{
NetOp
(
const
NetOp
&
o
)
:
framework
::
OperatorBase
(
o
.
type_
,
{},
{},
o
.
attrs_
)
{
this
->
ops_
.
reserve
(
o
.
ops_
.
size
());
std
::
transform
(
o
.
ops_
.
begin
(),
o
.
ops_
.
end
(),
std
::
back_inserter
(
this
->
ops_
),
[](
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
->
std
::
shared_ptr
<
OperatorBase
>
{
return
std
::
shared_ptr
<
OperatorBase
>
(
op
->
Clone
());
});
std
::
transform
(
o
.
ops_
.
begin
(),
o
.
ops_
.
end
(),
std
::
back_inserter
(
this
->
ops_
),
[](
const
std
::
unique_ptr
<
framework
::
OperatorBase
>&
op
)
{
return
std
::
unique_ptr
<
framework
::
OperatorBase
>
(
op
->
Clone
());
});
this
->
CompleteAddOp
();
}
...
...
@@ -86,21 +84,27 @@ class NetOp : public framework::OperatorBase {
return
true
;
}
void
AddOp
(
const
framework
::
OperatorBase
&
op
)
{
AddOp
(
op
.
Clone
());
}
/**
* @brief Add an operator by ptr
*/
void
AddOp
(
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
{
void
AddOp
(
std
::
unique_ptr
<
framework
::
OperatorBase
>
op
)
{
PADDLE_ENFORCE
(
!
add_op_done_
,
"Cannot AddOp when this network is sealed"
);
PADDLE_ENFORCE_NOT_NULL
(
op
,
"Cannot Insert Null op"
);
ops_
.
push_back
(
op
);
ops_
.
push_back
(
std
::
move
(
op
)
);
}
void
InsertOp
(
size_t
pos
,
const
std
::
shared_ptr
<
OperatorBase
>&
op
)
{
void
InsertOp
(
size_t
pos
,
std
::
unique_ptr
<
framework
::
OperatorBase
>
op
)
{
PADDLE_ENFORCE
(
!
add_op_done_
,
"Cannot InsertOp when this network is sealed"
);
PADDLE_ENFORCE_NOT_NULL
(
op
,
"Cannot Insert Null op"
);
PADDLE_ENFORCE_LE
(
pos
,
ops_
.
size
(),
"Out of range"
);
ops_
.
insert
(
ops_
.
begin
()
+
pos
,
op
);
ops_
.
insert
(
ops_
.
begin
()
+
pos
,
std
::
move
(
op
));
}
void
InsertOp
(
size_t
pos
,
const
framework
::
OperatorBase
&
op
)
{
InsertOp
(
pos
,
op
.
Clone
());
}
void
CompleteAddOp
(
bool
calculate
=
true
);
...
...
@@ -112,7 +116,7 @@ class NetOp : public framework::OperatorBase {
std
::
unique_ptr
<
framework
::
OperatorBase
>
Clone
()
const
override
;
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
>>
ops_
;
std
::
vector
<
std
::
unique_ptr
<
framework
::
OperatorBase
>>
ops_
;
private:
bool
add_op_done_
{
false
};
...
...
paddle/operators/net_op_test.cc
浏览文件 @
fb7d8d88
...
...
@@ -38,15 +38,12 @@ TEST(OpKernel, all) {
auto
net
=
std
::
make_shared
<
NetOp
>
();
ASSERT_NE
(
net
,
nullptr
);
auto
op1
=
std
::
shared
_ptr
<
TestOp
>
(
net
->
AddOp
(
std
::
unique
_ptr
<
TestOp
>
(
new
TestOp
(
"test"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w1"
}},
{
"b"
,
{
"b1"
}}},
{{
"Out"
,
{
"y"
}}},
{}));
net
->
AddOp
(
op1
);
auto
op2
=
std
::
shared_ptr
<
TestOp
>
(
{{
"Out"
,
{
"y"
}}},
{})));
net
->
AddOp
(
std
::
unique_ptr
<
TestOp
>
(
new
TestOp
(
"test"
,
{{
"X"
,
{
"y"
}},
{
"W"
,
{
"w2"
}},
{
"b"
,
{
"b2"
}}},
{{
"Out"
,
{
"z"
}}},
{}));
net
->
AddOp
(
op2
);
{{
"Out"
,
{
"z"
}}},
{})));
net
->
CompleteAddOp
();
AssertSameVectorWithoutOrder
({
"x"
,
"w1"
,
"b1"
,
"w2"
,
"b2"
},
...
...
@@ -61,21 +58,21 @@ TEST(OpKernel, all) {
TEST
(
NetOp
,
insert_op
)
{
NetOp
net
;
auto
op1
=
std
::
shared
_ptr
<
framework
::
NOP
>
(
auto
op1
=
std
::
unique
_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
(
"empty"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w1"
}},
{
"b"
,
{
"b1"
}}},
{{
"Out"
,
{
"y"
}}},
{}));
net
.
AddOp
(
op1
);
net
.
InsertOp
(
0
,
op1
);
net
.
AddOp
(
*
op1
);
net
.
InsertOp
(
0
,
*
op1
);
ASSERT_EQ
(
2UL
,
net
.
ops_
.
size
());
net
.
InsertOp
(
2
,
op1
);
net
.
InsertOp
(
2
,
std
::
move
(
op1
)
);
ASSERT_EQ
(
3UL
,
net
.
ops_
.
size
());
}
TEST
(
NetOp
,
Clone
)
{
NetOp
net
;
net
.
AddOp
(
std
::
shared
_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
{
"empty"
,
{},
{},
{}}));
net
.
AddOp
(
std
::
shared
_ptr
<
framework
::
NOP
>
(
std
::
unique
_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
{
"empty"
,
{},
{},
{}}));
net
.
AddOp
(
std
::
unique
_ptr
<
framework
::
NOP
>
(
new
framework
::
NOP
{
"empty2"
,
{},
{},
{}}));
net
.
CompleteAddOp
(
true
);
auto
new_net_op
=
net
.
Clone
();
...
...
paddle/operators/recurrent_op.h
浏览文件 @
fb7d8d88
...
...
@@ -34,7 +34,8 @@ class RecurrentAlgorithm {
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
DeviceContext
&
dev_ctx
)
const
;
void
Init
(
rnn
::
Argument
*
arg
,
std
::
shared_ptr
<
NetOp
>*
stepnet
)
{
void
Init
(
rnn
::
Argument
*
arg
,
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet
)
{
PADDLE_ENFORCE_NOT_NULL
(
stepnet
,
"stepnet should be set before."
);
arg_
=
arg
;
stepnet_
=
stepnet
;
...
...
@@ -63,7 +64,7 @@ class RecurrentAlgorithm {
void
InitMemories
(
framework
::
Scope
*
step_scopes
,
bool
infer_shape_mode
)
const
;
private:
std
::
shared_ptr
<
NetOp
>*
stepnet_
;
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet_
;
rnn
::
Argument
*
arg_
;
mutable
size_t
seq_len_
;
};
...
...
@@ -80,7 +81,8 @@ class RecurrentGradientAlgorithm {
* operator.
*/
public:
void
Init
(
rnn
::
Argument
*
arg
,
std
::
shared_ptr
<
NetOp
>*
stepnet
)
{
void
Init
(
rnn
::
Argument
*
arg
,
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet
)
{
PADDLE_ENFORCE_NOT_NULL
(
stepnet
,
"stepnet should be set before."
);
arg_
=
std
::
move
(
arg
);
stepnet_
=
stepnet
;
...
...
@@ -107,7 +109,7 @@ class RecurrentGradientAlgorithm {
private:
rnn
::
Argument
*
arg_
;
mutable
size_t
seq_len_
;
std
::
shared_ptr
<
NetOp
>*
stepnet_
;
std
::
unique_ptr
<
framework
::
OperatorBase
>*
stepnet_
;
};
class
RecurrentOp
:
public
framework
::
OperatorBase
{
...
...
@@ -133,15 +135,17 @@ class RecurrentOp : public framework::OperatorBase {
alg_
.
Run
(
scope
,
dev_ctx
);
}
void
set_stepnet
(
std
::
shared_ptr
<
NetOp
>
net
)
{
stepnet_
=
net
;
}
const
NetOp
&
stepnet
()
const
{
return
*
stepnet_
;
}
void
set_stepnet
(
std
::
unique_ptr
<
OperatorBase
>
net
)
{
stepnet_
=
std
::
move
(
net
);
}
const
OperatorBase
&
stepnet
()
const
{
return
*
stepnet_
;
}
static
const
rnn
::
ArgumentName
kArgName
;
private:
RecurrentAlgorithm
alg_
;
rnn
::
Argument
arg_
;
std
::
shared_ptr
<
NetOp
>
stepnet_
;
std
::
unique_ptr
<
OperatorBase
>
stepnet_
;
};
class
RecurrentGradientOp
:
public
framework
::
OperatorBase
{
...
...
@@ -171,12 +175,14 @@ class RecurrentGradientOp : public framework::OperatorBase {
static
const
rnn
::
ArgumentName
kArgName
;
void
set_stepnet
(
const
std
::
shared_ptr
<
NetOp
>&
net
)
{
stepnet_
=
net
;
}
const
NetOp
&
stepnet
()
const
{
return
*
stepnet_
;
}
void
set_stepnet
(
std
::
unique_ptr
<
OperatorBase
>
net
)
{
stepnet_
=
std
::
move
(
net
);
}
const
OperatorBase
&
stepnet
()
const
{
return
*
stepnet_
;
}
private:
RecurrentGradientAlgorithm
alg_
;
std
::
shared_ptr
<
NetOp
>
stepnet_
;
std
::
unique_ptr
<
OperatorBase
>
stepnet_
;
rnn
::
Argument
arg_
;
};
...
...
paddle/operators/scatter_test.cc
浏览文件 @
fb7d8d88
...
...
@@ -49,4 +49,8 @@ TEST(scatter, ScatterUpdate) {
EXPECT_EQ
(
output
->
data
<
float
>
()[
i
],
float
(
i
-
4
));
for
(
size_t
i
=
8
;
i
<
16
;
++
i
)
EXPECT_EQ
(
p_output
[
i
],
float
(
0
));
for
(
size_t
i
=
8
;
i
<
16
;
++
i
)
EXPECT_EQ
(
output
->
data
<
float
>
()[
i
],
float
(
0
));
delete
src
;
delete
index
;
delete
output
;
}
paddle/operators/sigmoid_op.cc
浏览文件 @
fb7d8d88
...
...
@@ -44,7 +44,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
ctx
.
Output
<
Tensor
>
(
0
)
->
Resize
(
ctx
.
Input
<
Tensor
>
(
0
)
->
dims
());
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
))
->
Resize
(
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
());
}
};
...
...
paddle/operators/sigmoid_op.h
浏览文件 @
fb7d8d88
...
...
@@ -37,7 +37,7 @@ class SigmoidKernel : public framework::OpKernel {
auto
Y
=
EigenVector
<
T
>::
Flatten
(
*
output
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
Y
.
device
(
place
)
=
1.
0
/
(
1.0
+
(
-
1.0
*
X
).
exp
());
Y
.
device
(
place
)
=
1.
/
(
1.
+
(
-
X
).
exp
());
}
};
...
...
paddle/scripts/docker/build.sh
浏览文件 @
fb7d8d88
...
...
@@ -146,7 +146,8 @@ RUN apt-get update &&\
pip install /*.whl; apt-get install -f -y &&
\
apt-get clean -y &&
\
rm -f /*.whl &&
\
paddle version
paddle version &&
\
ldconfig
${
DOCKERFILE_CUDNN_DSO
}
${
DOCKERFILE_GPU_ENV
}
ADD go/cmd/pserver/pserver /usr/bin/
...
...
python/paddle/v2/framework/tests/CMakeLists.txt
浏览文件 @
fb7d8d88
...
...
@@ -25,3 +25,4 @@ py_test(test_operator SRCS test_operator.py)
# py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
py_test
(
test_uniform_random_op SRCS test_uniform_random_op.py
)
py_test
(
test_recurrent_op SRCS test_recurrent_op.py
)
py_test
(
test_gradient_checker SRCS test_gradient_checker.py
)
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
fb7d8d88
import
unittest
import
numpy
import
itertools
import
paddle.v2.framework.core
as
core
from
paddle.v2.framework.op
import
Operator
...
...
@@ -8,6 +9,7 @@ __all__ = ['get_numeric_gradient']
def
create_op
(
op_type
):
# TODO need to set attrs
kwargs
=
dict
()
for
in_name
in
Operator
.
get_op_input_names
(
op_type
):
kwargs
[
in_name
]
=
in_name
...
...
@@ -66,7 +68,6 @@ def get_numeric_gradient(op,
local_scope
.
find_var
(
output
).
get_tensor
().
alloc_float
(
core
.
CPUPlace
(
))
# TODO(yuyang18): Only CPU is support now.
cpu_ctx
=
core
.
DeviceContext
.
create
(
core
.
CPUPlace
())
def
get_output
():
...
...
@@ -109,12 +110,110 @@ def get_numeric_gradient(op,
class
GradientChecker
(
unittest
.
TestCase
):
def
assert_is_close
(
self
,
numeric_grads
,
scope
,
max_relative_error
,
msg_prefix
):
for
name
in
numeric_grads
:
b
=
numpy
.
array
(
scope
.
find_var
(
grad_var_name
(
name
)).
get_tensor
())
a
=
numeric_grads
[
name
]
def
__get_gradient
(
self
,
forward_op
,
backward_op
,
input_value
,
grad_names
,
place
):
"""Get the input gradients after running forward and backward operators
on the given places.
:param forward_op: forward operator
:type forward_op: Operator
:param backward_op: backward operator
:type backward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:param grad_names: the names of returned input gradients.
:type input_value: a list of string
:param place: the device type.
:type place: CPUPlace or GPUPlace
:return: the input grdients of given grad_names.
:rtype: a list of numpy.array
"""
scope
=
core
.
Scope
()
ctx
=
core
.
DeviceContext
.
create
(
place
)
inputs
=
forward_op
.
inputs
()
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
outputs
=
forward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
# create input var and set value
for
name
,
value
in
input_value
.
iteritems
():
if
name
not
in
in_names
:
raise
ValueError
(
name
+
"does not exist in Op's inputs."
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# run forward op
for
out_name
in
out_names
:
scope
.
new_var
(
out_name
)
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# set output var's shape
# set output grad to ones
for
name
in
out_names
:
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
numpy
.
ones
(
out_tensor
.
shape
(),
dtype
=
numpy
.
float32
)
grad_tensor
.
set
(
data
,
place
)
# run backward op
for
name
in
backward_op
.
outputs
():
scope
.
new_var
(
name
)
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
outs
=
[
numpy
.
array
(
scope
.
find_var
(
name
).
get_tensor
())
for
name
in
grad_names
]
return
outs
def
compare_grad
(
self
,
forward_op
,
input_value
):
""" Compare the input gradients between CPU and GPU for the given forward
operator.
:param forward_op: forward operator
:type forward_op: Operator
:param input_value: input values.
:type input_value: dict{string:numpy.array}
:raises: AssertionError, there is different gradient value.
"""
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
set
())
# return if not compile with GPU or not implementing GPU kernel
if
not
(
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
()):
return
outputs
=
backward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
cpu_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_value
,
out_names
,
core
.
CPUPlace
())
gpu_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_value
,
out_names
,
core
.
GPUPlace
(
0
))
for
c_grad
,
g_grad
,
name
in
itertools
.
izip
(
cpu_grads
,
gpu_grads
,
out_names
):
self
.
assertTrue
(
numpy
.
allclose
(
c_grad
,
g_grad
,
atol
=
1e-4
),
"output name: "
+
name
+
" has diff"
)
def
__assert_is_close
(
self
,
numeric_grads
,
analytic_grads
,
names
,
max_relative_error
,
msg_prefix
):
"""Use relative error for the comparison.
:param numeric_grads: the numerical graidents.
:type numeric_grads: a list of numpy.array
:param analytic_grads: the analytical graidents.
:type analytic_grads: a list of numpy.array
:param name: the names of gradients, used to print for debug.
:type names: a list of string
:param msg_prefix: string info, used to print for debug.
:type msf_prefix: string
"""
for
a
,
b
,
name
in
itertools
.
izip
(
numeric_grads
,
analytic_grads
,
names
):
abs_a
=
numpy
.
abs
(
a
)
# if abs_a is nearly zero, then use abs error for a, not relative
# error.
...
...
@@ -159,106 +258,26 @@ class GradientChecker(unittest.TestCase):
inputs
=
forward_op
.
inputs
()
in_names
=
[
item
for
k
in
inputs
for
item
in
inputs
[
k
]]
outputs
=
forward_op
.
outputs
()
out_names
=
[
item
for
k
in
outputs
for
item
in
outputs
[
k
]]
for
no_grad
in
no_grad_set
:
if
no_grad
not
in
in_names
:
raise
ValueError
(
"no_grad should be in in_names"
)
backward_op
=
core
.
Operator
.
backward
(
forward_op
,
no_grad_set
)
bwd_outputs
=
backward_op
.
outputs
()
bwd_out_names
=
[
item
for
k
in
bwd_outputs
for
item
in
bwd_outputs
[
k
]]
places
=
[
core
.
CPUPlace
()]
if
not
only_cpu
and
core
.
is_compile_gpu
()
and
backward_op
.
support_gpu
():
places
.
append
(
core
.
GPUPlace
(
0
))
numeric_grad
=
dict
()
# get numeric gradient
for
check_name
in
inputs_to_check
:
numeric_grad
[
check_name
]
=
\
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
check_name
)
# get numerical gradients
numeric_grads
=
[
get_numeric_gradient
(
forward_op
,
input_vars
,
output_name
,
name
)
for
name
in
inputs_to_check
]
# get operator gradient according to different device
check_names
=
[
grad_var_name
(
name
)
for
name
in
inputs_to_check
]
for
place
in
places
:
scope
=
core
.
Scope
()
ctx
=
core
.
DeviceContext
.
create
(
place
)
# create input var and set value
for
name
,
value
in
input_vars
.
iteritems
():
if
name
not
in
in_names
:
raise
ValueError
(
name
+
" not in op.inputs_"
)
var
=
scope
.
new_var
(
name
).
get_tensor
()
var
.
set_dims
(
value
.
shape
)
var
.
set
(
value
,
place
)
# create output var
for
out_name
in
out_names
:
scope
.
new_var
(
out_name
).
get_tensor
()
# infer the shape of output var and compute/set value of output var
forward_op
.
infer_shape
(
scope
)
forward_op
.
run
(
scope
,
ctx
)
# create output grad var
# set shape as the output var
# set value of this grad to ones
for
name
in
out_names
:
out_tensor
=
scope
.
find_var
(
name
).
get_tensor
()
grad_tensor
=
scope
.
new_var
(
grad_var_name
(
name
)).
get_tensor
()
grad_tensor
.
set_dims
(
out_tensor
.
shape
())
data
=
1.0
*
numpy
.
ones
(
out_tensor
.
shape
())
grad_tensor
.
set
(
data
,
place
)
# create input grad var
for
name
in
bwd_out_names
:
scope
.
new_var
(
name
).
get_tensor
()
# infer the shape of input gradient var and compute/set it's value
# with backward op
backward_op
.
infer_shape
(
scope
)
backward_op
.
run
(
scope
,
ctx
)
self
.
assert_is_close
(
numeric_grad
,
scope
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
if
__name__
==
'__main__'
:
class
GetNumericGradientTest
(
unittest
.
TestCase
):
def
test_add_op
(
self
):
add_op
=
Operator
(
'add_two'
,
X
=
"X"
,
Y
=
"Y"
,
Out
=
"Z"
)
x
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
y
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
arr
=
get_numeric_gradient
(
add_op
,
{
'X'
:
x
,
"Y"
:
y
},
'Z'
,
'X'
)
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-2
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
numpy
.
max
(
x
)
exps
=
numpy
.
exp
(
shiftx
)
return
exps
/
numpy
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
numpy
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"X"
:
X
},
'Y'
,
'X'
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
unittest
.
main
()
# get analytical gradients according to different device
analytic_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_vars
,
check_names
,
place
)
self
.
__assert_is_close
(
numeric_grads
,
analytic_grads
,
check_names
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
python/paddle/v2/framework/tests/test_gradient_checker.py
0 → 100644
浏览文件 @
fb7d8d88
import
unittest
import
numpy
from
paddle.v2.framework.op
import
Operator
from
gradient_checker
import
GradientChecker
from
gradient_checker
import
get_numeric_gradient
class
GetNumericGradientTest
(
unittest
.
TestCase
):
def
test_add_op
(
self
):
add_op
=
Operator
(
'add_two'
,
X
=
"X"
,
Y
=
"Y"
,
Out
=
"Z"
)
x
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
y
=
numpy
.
random
.
random
((
10
,
1
)).
astype
(
"float32"
)
arr
=
get_numeric_gradient
(
add_op
,
{
'X'
:
x
,
"Y"
:
y
},
'Z'
,
'X'
)
self
.
assertAlmostEqual
(
arr
.
mean
(),
1.0
,
delta
=
1e-4
)
def
test_softmax_op
(
self
):
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
shiftx
=
x
-
numpy
.
max
(
x
)
exps
=
numpy
.
exp
(
shiftx
)
return
exps
/
numpy
.
sum
(
exps
)
def
label_softmax_grad
(
Y
,
dY
):
dX
=
Y
*
0.0
for
i
in
range
(
Y
.
shape
[
0
]):
d
=
numpy
.
dot
(
Y
[
i
,
:],
dY
[
i
,
:])
dX
[
i
,
:]
=
Y
[
i
,
:]
*
(
dY
[
i
,
:]
-
d
)
return
dX
softmax_op
=
Operator
(
"softmax"
,
X
=
"X"
,
Y
=
"Y"
)
X
=
numpy
.
random
.
random
((
2
,
2
)).
astype
(
"float32"
)
Y
=
numpy
.
apply_along_axis
(
stable_softmax
,
1
,
X
)
dY
=
numpy
.
ones
(
Y
.
shape
)
dX
=
label_softmax_grad
(
Y
,
dY
)
arr
=
get_numeric_gradient
(
softmax_op
,
{
"X"
:
X
},
'Y'
,
'X'
)
numpy
.
testing
.
assert_almost_equal
(
arr
,
dX
,
decimal
=
1e-2
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_mean_op.py
浏览文件 @
fb7d8d88
import
unittest
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
import
numpy
as
np
...
...
@@ -12,5 +13,12 @@ class TestMeanOp(unittest.TestCase):
self
.
outputs
=
{
'Out'
:
np
.
mean
(
self
.
inputs
[
'X'
])}
class
MeanGradOpTest
(
GradientChecker
):
def
test_normal
(
self
):
op
=
create_op
(
"mean"
)
inputs
=
{
"X"
:
np
.
random
.
random
((
10
,
10
)).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Out"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/framework/tests/test_sigmoid_op.py
浏览文件 @
fb7d8d88
import
unittest
from
op_test_util
import
OpTestMeta
import
numpy
as
np
from
op_test_util
import
OpTestMeta
from
gradient_checker
import
GradientChecker
,
create_op
class
TestSigmoidOp
(
unittest
.
TestCase
):
...
...
@@ -8,12 +9,20 @@ class TestSigmoidOp(unittest.TestCase):
def
setUp
(
self
):
self
.
type
=
"sigmoid"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
100
)).
astype
(
"float32"
)}
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
15
,
31
)).
astype
(
"float32"
)}
self
.
outputs
=
{
'Y'
:
1
/
(
1
+
np
.
exp
(
-
self
.
inputs
[
'X'
]))}
#class TestSigmoidGradOp(unittest.TestCase):
#TODO(qingqing) add unit test
class
TestSigmoidGradOp
(
GradientChecker
):
def
test_grad
(
self
):
op
=
create_op
(
"sigmoid"
)
inputs
=
{
"X"
:
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
"float32"
)}
# compare gpu and cpu results for backward op.
# this test will be skiped if only compiling CPU version.
self
.
compare_grad
(
op
,
inputs
)
# check gradients
self
.
check_grad
(
op
,
inputs
,
set
(
"X"
),
"Y"
,
max_relative_error
=
0.007
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录