Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
fb516ca4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fb516ca4
编写于
10月 21, 2020
作者:
G
Guanghua Yu
提交者:
GitHub
10月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete pact in eval,infer,export_model (#1584)
上级
625c9863
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
96 addition
and
34 deletion
+96
-34
slim/quantization/README.md
slim/quantization/README.md
+16
-2
slim/quantization/pact.py
slim/quantization/pact.py
+43
-0
slim/quantization/train.py
slim/quantization/train.py
+37
-32
未找到文件。
slim/quantization/README.md
浏览文件 @
fb516ca4
...
...
@@ -9,6 +9,7 @@
-
[
检测模型的常规训练方法
](
https://github.com/PaddlePaddle/PaddleDetection
)
-
[
PaddleSlim使用文档
](
https://paddlepaddle.github.io/PaddleSlim/
)
-
[
自定义量化PACT
](
https://github.com/PaddlePaddle/PaddleSlim/tree/develop/demo/quant/pact_quant_aware
)
已发布量化模型见
[
压缩模型库
](
../README.md
)
...
...
@@ -76,11 +77,24 @@ python slim/quantization/train.py --not_quant_pattern yolo_output \
-
**LeaningRate.base_lr:**
根据多卡的总
`batch_size`
调整
`base_lr`
,两者大小正相关,可以简单的按比例进行调整。
-
**LearningRate.schedulers.PiecewiseDecay.milestones:**
请根据batch size的变化对其调整。
通过
`python slim/quantization/train.py --help`
查看可配置参数。
通过
`python ./tools/configure.py help ${option_name}`
查看如何通过命令行覆盖配置文件中的参数。
### PACT自定义量化
```
python slim/quantization/train.py \
--eval \
-c ./configs/yolov3_mobilenet_v3.yml \
-o max_iters=30000 \
save_dir=./output/mobilenetv3 \
LearningRate.base_lr=0.0001 \
LearningRate.schedulers="[!PiecewiseDecay {gamma: 0.1, milestones: [10000]}]" \
pretrain_weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.pdparams \
--use_pact=True
```
-
在量化训练时,将
`--use_pact=True`
,即可选择PACT自定义量化
### 训练时的模型结构
[
PaddleSlim 量化API
](
https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/
)
文档中介绍了
``paddleslim.quant.quant_aware``
和
``paddleslim.quant.convert``
两个接口。
...
...
@@ -144,6 +158,7 @@ python slim/quantization/eval.py --not_quant_pattern yolo_output -c ./configs/y
python slim/quantization/export_model.py --not_quant_pattern yolo_output -c ./configs/yolov3_mobilenet_v1.yml --output_dir ${save path} \
-o weights=./output/mobilenetv1/yolov3_mobilenet_v1/best_model
```
## 预测
### python预测
...
...
@@ -158,7 +173,6 @@ python slim/quantization/infer.py --not_quant_pattern yolo_output \
-o weights=./output/mobilenetv1/yolov3_mobilenet_v1/best_model
```
### PaddleLite预测
导出模型步骤中导出的FP32模型可使用PaddleLite进行加载预测,可参见教程
[
Paddle-Lite如何加载运行量化模型
](
https://github.com/PaddlePaddle/Paddle-Lite/wiki/model_quantization
)
...
...
slim/quantization/pact.py
0 → 100644
浏览文件 @
fb516ca4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
paddle
import
paddle.fluid
as
fluid
from
paddleslim.quant
import
quant_aware
,
convert
import
numpy
as
np
from
paddle.fluid.layer_helper
import
LayerHelper
def
pact
(
x
,
name
=
None
):
helper
=
LayerHelper
(
"pact"
,
**
locals
())
dtype
=
'float32'
init_thres
=
20
u_param_attr
=
fluid
.
ParamAttr
(
name
=
x
.
name
+
'_pact'
,
initializer
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
init_thres
),
regularizer
=
fluid
.
regularizer
.
L2Decay
(
0.0001
),
learning_rate
=
1
)
u_param
=
helper
.
create_parameter
(
attr
=
u_param_attr
,
shape
=
[
1
],
dtype
=
dtype
)
x
=
fluid
.
layers
.
elementwise_sub
(
x
,
fluid
.
layers
.
relu
(
fluid
.
layers
.
elementwise_sub
(
x
,
u_param
)))
x
=
fluid
.
layers
.
elementwise_add
(
x
,
fluid
.
layers
.
relu
(
fluid
.
layers
.
elementwise_sub
(
-
u_param
,
x
)))
return
x
def
get_optimizer
():
return
fluid
.
optimizer
.
MomentumOptimizer
(
0.0001
,
0.9
)
slim/quantization/train.py
浏览文件 @
fb516ca4
...
...
@@ -39,6 +39,7 @@ from ppdet.utils.cli import ArgsParser
from
ppdet.utils.check
import
check_gpu
,
check_version
,
check_config
import
ppdet.utils.checkpoint
as
checkpoint
from
paddleslim.quant
import
quant_aware
,
convert
from
pact
import
pact
,
get_optimizer
import
logging
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
...
...
@@ -51,14 +52,6 @@ def save_checkpoint(exe, prog, path, train_prog):
logger
.
info
(
'Save model to {}.'
.
format
(
path
))
fluid
.
io
.
save_persistables
(
exe
,
path
,
main_program
=
prog
)
v
=
train_prog
.
global_block
().
var
(
'@LR_DECAY_COUNTER@'
)
fluid
.
io
.
save_vars
(
exe
,
dirname
=
path
,
vars
=
[
v
])
def
load_global_step
(
exe
,
prog
,
path
):
v
=
prog
.
global_block
().
var
(
'@LR_DECAY_COUNTER@'
)
fluid
.
io
.
load_vars
(
exe
,
path
,
prog
,
[
v
])
def
main
():
if
FLAGS
.
eval
is
False
:
...
...
@@ -105,9 +98,10 @@ def main():
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
fluid
.
unique_name
.
guard
():
model
=
create
(
main_arch
)
inputs_def
=
cfg
[
'TrainReader'
][
'inputs_def'
]
feed_vars
,
train_loader
=
model
.
build_inputs
(
**
inputs_def
)
if
FLAGS
.
use_pact
:
feed_vars
[
'image'
].
stop_gradient
=
False
train_fetches
=
model
.
train
(
feed_vars
)
loss
=
train_fetches
[
'loss'
]
lr
=
lr_builder
()
...
...
@@ -181,17 +175,30 @@ def main():
fuse_bn
=
getattr
(
model
.
backbone
,
'norm_type'
,
None
)
==
'affine_channel'
if
not
FLAGS
.
resume_checkpoint
:
if
cfg
.
pretrain_weights
and
fuse_bn
and
not
ignore_params
:
checkpoint
.
load_and_fusebn
(
exe
,
train_prog
,
cfg
.
pretrain_weights
)
elif
cfg
.
pretrain_weights
:
checkpoint
.
load_params
(
exe
,
train_prog
,
cfg
.
pretrain_weights
,
ignore_params
=
ignore_params
)
if
cfg
.
pretrain_weights
and
fuse_bn
and
not
ignore_params
:
checkpoint
.
load_and_fusebn
(
exe
,
train_prog
,
cfg
.
pretrain_weights
)
elif
cfg
.
pretrain_weights
:
checkpoint
.
load_params
(
exe
,
train_prog
,
cfg
.
pretrain_weights
,
ignore_params
=
ignore_params
)
if
FLAGS
.
use_pact
:
act_preprocess_func
=
pact
optimizer_func
=
get_optimizer
executor
=
exe
else
:
act_preprocess_func
=
None
optimizer_func
=
None
executor
=
None
# insert quantize op in train_prog, return type is CompiledProgram
train_prog_quant
=
quant_aware
(
train_prog
,
place
,
config
,
for_test
=
False
)
train_prog_quant
=
quant_aware
(
train_prog
,
place
,
config
,
scope
=
None
,
act_preprocess_func
=
act_preprocess_func
,
optimizer_func
=
optimizer_func
,
executor
=
executor
,
for_test
=
False
)
compiled_train_prog
=
train_prog_quant
.
with_data_parallel
(
loss_name
=
loss
.
name
,
...
...
@@ -200,14 +207,18 @@ def main():
if
FLAGS
.
eval
:
# insert quantize op in eval_prog
eval_prog
=
quant_aware
(
eval_prog
,
place
,
config
,
for_test
=
True
)
eval_prog
=
quant_aware
(
eval_prog
,
place
,
config
,
scope
=
None
,
act_preprocess_func
=
act_preprocess_func
,
optimizer_func
=
optimizer_func
,
executor
=
executor
,
for_test
=
True
)
compiled_eval_prog
=
fluid
.
CompiledProgram
(
eval_prog
)
start_iter
=
0
if
FLAGS
.
resume_checkpoint
:
checkpoint
.
load_checkpoint
(
exe
,
eval_prog
,
FLAGS
.
resume_checkpoint
)
load_global_step
(
exe
,
train_prog
,
FLAGS
.
resume_checkpoint
)
start_iter
=
checkpoint
.
global_step
()
train_reader
=
create_reader
(
cfg
.
TrainReader
,
(
cfg
.
max_iters
-
start_iter
)
*
devices_num
)
...
...
@@ -253,8 +264,6 @@ def main():
if
(
it
>
0
and
it
%
cfg
.
snapshot_iter
==
0
or
it
==
cfg
.
max_iters
-
1
)
\
and
(
not
FLAGS
.
dist
or
trainer_id
==
0
):
save_name
=
str
(
it
)
if
it
!=
cfg
.
max_iters
-
1
else
"model_final"
save_checkpoint
(
exe
,
eval_prog
,
os
.
path
.
join
(
save_dir
,
save_name
),
train_prog
)
if
FLAGS
.
eval
:
# evaluation
...
...
@@ -288,12 +297,6 @@ def main():
if
__name__
==
'__main__'
:
parser
=
ArgsParser
()
parser
.
add_argument
(
"-r"
,
"--resume_checkpoint"
,
default
=
None
,
type
=
str
,
help
=
"Checkpoint path for resuming training."
)
parser
.
add_argument
(
"--loss_scale"
,
default
=
8.
,
...
...
@@ -315,5 +318,7 @@ if __name__ == '__main__':
type
=
str
,
help
=
"Layers which name_scope contains string in not_quant_pattern will not be quantized"
)
parser
.
add_argument
(
"--use_pact"
,
nargs
=
'+'
,
type
=
bool
,
help
=
"Whether to use PACT or not."
)
FLAGS
=
parser
.
parse_args
()
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录