提交 fa5036aa 编写于 作者: L luotao1

add test_all_data in test_analyzer_ner

上级 b4fa3dbd
...@@ -25,6 +25,7 @@ DEFINE_string(infer_model, "", "model path"); ...@@ -25,6 +25,7 @@ DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data path"); DEFINE_string(infer_data, "", "data path");
DEFINE_int32(batch_size, 10, "batch size."); DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times."); DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
namespace paddle { namespace paddle {
namespace inference { namespace inference {
...@@ -35,6 +36,7 @@ struct DataRecord { ...@@ -35,6 +36,7 @@ struct DataRecord {
std::vector<size_t> lod; // two inputs have the same lod info. std::vector<size_t> lod; // two inputs have the same lod info.
size_t batch_iter{0}; size_t batch_iter{0};
size_t batch_size{1}; size_t batch_size{1};
size_t num_samples; // total number of samples
DataRecord() = default; DataRecord() = default;
explicit DataRecord(const std::string &path, int batch_size = 1) explicit DataRecord(const std::string &path, int batch_size = 1)
: batch_size(batch_size) { : batch_size(batch_size) {
...@@ -81,6 +83,7 @@ struct DataRecord { ...@@ -81,6 +83,7 @@ struct DataRecord {
word_data_all.push_back(std::move(word_data)); word_data_all.push_back(std::move(word_data));
mention_data_all.push_back(std::move(mention_data)); mention_data_all.push_back(std::move(mention_data));
} }
num_samples = num_lines;
} }
}; };
...@@ -120,12 +123,33 @@ void TestChineseNERPrediction() { ...@@ -120,12 +123,33 @@ void TestChineseNERPrediction() {
auto predictor = auto predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config); CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
std::vector<PaddleTensor> input_slots; std::vector<PaddleTensor> input_slots;
DataRecord data(FLAGS_infer_data, FLAGS_batch_size); std::vector<PaddleTensor> outputs;
Timer timer;
if (FLAGS_test_all_data) {
LOG(INFO) << "test all data";
double sum = 0;
size_t num_samples;
for (int i = 0; i < FLAGS_repeat; i++) {
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
num_samples = data.num_samples;
for (size_t bid = 0; bid < num_samples; ++bid) {
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
timer.tic();
predictor->Run(input_slots, &outputs);
sum += timer.toc();
}
}
LOG(INFO) << "total number of samples: " << num_samples;
PrintTime(FLAGS_batch_size, FLAGS_repeat, 1, 0, sum / FLAGS_repeat);
LOG(INFO) << "average latency of each sample: "
<< sum / FLAGS_repeat / num_samples;
return;
}
// Prepare inputs. // Prepare inputs.
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
PrepareInputs(&input_slots, &data, FLAGS_batch_size); PrepareInputs(&input_slots, &data, FLAGS_batch_size);
std::vector<PaddleTensor> outputs;
Timer timer;
timer.tic(); timer.tic();
for (int i = 0; i < FLAGS_repeat; i++) { for (int i = 0; i < FLAGS_repeat; i++) {
predictor->Run(input_slots, &outputs); predictor->Run(input_slots, &outputs);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册