Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
fa10677a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
fa10677a
编写于
8月 02, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify skipIm2col to need2col, delete useless variable colBuffer
上级
5229df52
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
26 addition
and
27 deletion
+26
-27
paddle/function/ConvOp.h
paddle/function/ConvOp.h
+4
-4
paddle/function/GemmConvOp.cpp
paddle/function/GemmConvOp.cpp
+22
-23
未找到文件。
paddle/function/ConvOp.h
浏览文件 @
fa10677a
...
...
@@ -110,10 +110,10 @@ protected:
}
// determine whether im2col needs to be performed
inline
bool
is
Skip
Im2col
(
const
TensorShape
&
filter
)
const
{
return
(
getFilterHeight
(
filter
)
==
1
&&
getFilterWidth
(
filter
)
==
1
&&
strideH
()
==
1
&&
strideW
()
==
1
&&
paddingH
()
==
0
&&
paddingW
()
==
0
);
inline
bool
is
Need
Im2col
(
const
TensorShape
&
filter
)
const
{
return
!
(
getFilterHeight
(
filter
)
==
1
&&
getFilterWidth
(
filter
)
==
1
&&
strideH
()
==
1
&&
strideW
()
==
1
&&
paddingH
()
==
0
&&
paddingW
()
==
0
);
}
std
::
vector
<
size_t
>
strides_
;
...
...
paddle/function/GemmConvOp.cpp
浏览文件 @
fa10677a
...
...
@@ -66,15 +66,15 @@ public:
real
*
inputData
=
inputs
[
0
].
data
<
real
>
();
real
*
filterData
=
inputs
[
1
].
data
<
real
>
();
real
*
outputData
=
outputs
[
0
].
data
<
real
>
();
bool
skipIm2col
=
isSkip
Im2col
(
filter
);
bool
needIm2col
=
isNeed
Im2col
(
filter
);
TensorShape
imShape
=
TensorShape
({
inputChannels
/
groups_
,
inputHeight
,
inputWidth
});
TensorShape
colShape
;
real
*
colBuffer
,
*
colData
=
NULL
;
real
*
colData
=
NULL
;
if
(
!
skip
Im2col
)
{
if
(
need
Im2col
)
{
colShape
=
TensorShape
({
inputChannels
/
groups_
,
filterHeight
,
filterWidth
,
...
...
@@ -93,8 +93,7 @@ public:
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
for
(
size_t
g
=
0
;
g
<
groups_
;
g
++
)
{
colBuffer
=
inputData
+
g
*
inputOffset
;
if
(
!
skipIm2col
)
{
if
(
needIm2col
)
{
im2col
(
inputData
+
g
*
inputOffset
,
imShape
,
colData
,
...
...
@@ -103,7 +102,8 @@ public:
strideW
(),
paddingH
(),
paddingW
());
colBuffer
=
colData
;
}
else
{
colData
=
inputData
+
g
*
inputOffset
;
}
int
M
=
outputChannels
/
groups_
;
int
N
=
outputHeight
*
outputWidth
;
...
...
@@ -116,7 +116,7 @@ public:
1.0
f
,
filterData
+
g
*
filterOffset
,
K
,
col
Buffer
,
col
Data
,
N
,
beta
,
outputData
+
g
*
outputOffset
,
...
...
@@ -169,15 +169,15 @@ public:
real
*
outputGrad
=
inputs
[
0
].
data
<
real
>
();
real
*
filterData
=
inputs
[
1
].
data
<
real
>
();
real
*
inputGrad
=
outputs
[
0
].
data
<
real
>
();
bool
skipIm2col
=
isSkip
Im2col
(
filter
);
bool
needIm2col
=
isNeed
Im2col
(
filter
);
TensorShape
imShape
=
TensorShape
({
inputChannels
/
groups_
,
inputHeight
,
inputWidth
});
TensorShape
colShape
;
real
*
colBuffer
,
*
colData
=
NULL
;
real
*
colData
=
NULL
;
if
(
!
skip
Im2col
)
{
if
(
need
Im2col
)
{
colShape
=
TensorShape
({
inputChannels
/
groups_
,
filterHeight
,
filterWidth
,
...
...
@@ -200,10 +200,9 @@ public:
int
K
=
outputChannels
/
groups_
;
int
N
=
outputHeight
*
outputWidth
;
int
M
=
inputChannels
/
groups_
*
filterHeight
*
filterWidth
;
colBuffer
=
colData
;
real
scale
=
0.0
f
;
if
(
skip
Im2col
)
{
col
Buffer
=
inputGrad
+
g
*
inputOffset
;
if
(
!
need
Im2col
)
{
col
Data
=
inputGrad
+
g
*
inputOffset
;
scale
=
1.0
f
;
}
gemm
(
CblasTrans
,
...
...
@@ -217,12 +216,12 @@ public:
outputGrad
+
g
*
outputOffset
,
N
,
scale
,
col
Buffer
,
col
Data
,
N
);
if
(
!
skip
Im2col
)
{
if
(
need
Im2col
)
{
col2im
(
inputGrad
+
g
*
inputOffset
,
imShape
,
col
Buffer
,
col
Data
,
colShape
,
strideH
(),
strideW
(),
...
...
@@ -281,15 +280,15 @@ public:
real
*
outputGrad
=
inputs
[
0
].
data
<
real
>
();
real
*
inputData
=
inputs
[
1
].
data
<
real
>
();
real
*
filterGrad
=
outputs
[
0
].
data
<
real
>
();
bool
skipIm2col
=
isSkip
Im2col
(
filter
);
bool
needIm2col
=
isNeed
Im2col
(
filter
);
TensorShape
imShape
=
TensorShape
({
inputChannels
/
groups_
,
inputHeight
,
inputWidth
});
TensorShape
colShape
;
real
*
colBuffer
,
*
colData
=
NULL
;
real
*
colData
=
NULL
;
if
(
!
skip
Im2col
)
{
if
(
need
Im2col
)
{
colShape
=
TensorShape
({
inputChannels
/
groups_
,
filterHeight
,
filterWidth
,
...
...
@@ -307,8 +306,7 @@ public:
size_t
filterOffset
=
filter
.
getElements
()
/
groups_
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
for
(
size_t
g
=
0
;
g
<
groups_
;
g
++
)
{
colBuffer
=
inputData
+
g
*
inputOffset
;
if
(
!
skipIm2col
)
{
if
(
needIm2col
)
{
im2col
(
inputData
+
g
*
inputOffset
,
imShape
,
colData
,
...
...
@@ -317,7 +315,8 @@ public:
strideW
(),
paddingH
(),
paddingW
());
colBuffer
=
colData
;
}
else
{
colData
=
inputData
+
g
*
inputOffset
;
}
int
M
=
outputChannels
/
groups_
;
int
K
=
outputHeight
*
outputWidth
;
...
...
@@ -330,7 +329,7 @@ public:
1.0
f
,
outputGrad
+
g
*
outputOffset
,
K
,
col
Buffer
,
col
Data
,
K
,
i
==
0
?
beta
:
1.0
f
,
filterGrad
+
g
*
filterOffset
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录