- Covers [YOLO family](https://github.com/nemonameless/PaddleDetection_YOLOSeries) classic and latest models: YOLOv3, PP-YOLOE (a real-time high-precision object detection model developed by Baidu PaddlePaddle), and cutting-edge detection algorithms such as YOLOv4, YOLOv5, YOLOX, MT-YOLOv6, and YOLOv7
- Covers [YOLO family](https://github.com/nemonameless/PaddleDetection_YOLOSeries) classic and latest models: YOLOv3, PP-YOLOE (a real-time high-precision object detection model developed by Baidu PaddlePaddle), and cutting-edge detection algorithms such as YOLOv4, YOLOv5, YOLOX, YOLOv6, and YOLOv7
- Newly add high precision detection model based on [ViT](configs/vitdet) backbone network, with a 55.7% mAP accuracy on COCO dataset; newly add multi-object tracking model [OC-SORT](configs/mot/ocsort); newly add [ConvNeXt](configs/convnext) backbone network.
@@ -38,7 +38,7 @@ English | [简体中文](./CHANGELOG.md)
- Cutting-edge algorithms
- YOLO Family
- Release the full range of YOLO family models covering the cutting-edge detection algorithms YOLOv5, MT-YOLOv6 and YOLOv7
- Release the full range of YOLO family models covering the cutting-edge detection algorithms YOLOv5, YOLOv6 and YOLOv7
- Based on the ConvNext backbone network, YOLO's algorithm training periods are reduced by 5-8 times with accuracy generally improving by 1%-5% mAP; Thanks to the model compression strategy, its speed increased by over 30% with no loss of precision.
- Newly add high precision detection model based on [ViT](configs/vitdet) backbone network, with a 55.7% mAP accuracy on the COCO dataset
- Newly add multi-object tracking model [OC-SORT](configs/mot/ocsort)