Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f78c57b4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f78c57b4
编写于
4月 11, 2020
作者:
G
Guanghua Yu
提交者:
GitHub
4月 11, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Merge PR#367 from release/0.2 to Master (#482)
上级
763a8f2d
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
207 addition
and
0 deletion
+207
-0
configs/yolov3_darknet_voc_diouloss.yml
configs/yolov3_darknet_voc_diouloss.yml
+94
-0
ppdet/modeling/losses/__init__.py
ppdet/modeling/losses/__init__.py
+2
-0
ppdet/modeling/losses/diou_loss_yolo.py
ppdet/modeling/losses/diou_loss_yolo.py
+111
-0
未找到文件。
configs/yolov3_darknet_voc_diouloss.yml
0 → 100644
浏览文件 @
f78c57b4
architecture
:
YOLOv3
use_gpu
:
true
max_iters
:
70000
log_smooth_window
:
20
save_dir
:
output
snapshot_iter
:
2000
metric
:
VOC
map_type
:
11point
pretrain_weights
:
https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar
weights
:
output/yolov3_darknet_voc/model_final
num_classes
:
20
use_fine_grained_loss
:
false
YOLOv3
:
backbone
:
DarkNet
yolo_head
:
YOLOv3Head
DarkNet
:
norm_type
:
sync_bn
norm_decay
:
0.
depth
:
53
YOLOv3Head
:
anchor_masks
:
[[
6
,
7
,
8
],
[
3
,
4
,
5
],
[
0
,
1
,
2
]]
anchors
:
[[
10
,
13
],
[
16
,
30
],
[
33
,
23
],
[
30
,
61
],
[
62
,
45
],
[
59
,
119
],
[
116
,
90
],
[
156
,
198
],
[
373
,
326
]]
norm_decay
:
0.
yolo_loss
:
YOLOv3Loss
nms
:
background_label
:
-1
keep_top_k
:
100
nms_threshold
:
0.45
nms_top_k
:
1000
normalized
:
false
score_threshold
:
0.01
YOLOv3Loss
:
batch_size
:
8
ignore_thresh
:
0.7
label_smooth
:
false
iou_loss
:
DiouLossYolo
DiouLossYolo
:
loss_weight
:
5
LearningRate
:
base_lr
:
0.001
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
-
55000
-
62000
-
!LinearWarmup
start_factor
:
0.
steps
:
1000
OptimizerBuilder
:
optimizer
:
momentum
:
0.9
type
:
Momentum
regularizer
:
factor
:
0.0005
type
:
L2
_READER_
:
'
yolov3_reader.yml'
TrainReader
:
inputs_def
:
fields
:
[
'
image'
,
'
gt_bbox'
,
'
gt_class'
,
'
gt_score'
]
num_max_boxes
:
50
dataset
:
!VOCDataSet
dataset_dir
:
dataset/voc
anno_path
:
trainval.txt
use_default_label
:
true
with_background
:
false
EvalReader
:
inputs_def
:
fields
:
[
'
image'
,
'
im_size'
,
'
im_id'
,
'
gt_bbox'
,
'
gt_class'
,
'
is_difficult'
]
num_max_boxes
:
50
dataset
:
!VOCDataSet
dataset_dir
:
dataset/voc
anno_path
:
test.txt
use_default_label
:
true
with_background
:
false
TestReader
:
dataset
:
!ImageFolder
use_default_label
:
true
with_background
:
false
ppdet/modeling/losses/__init__.py
浏览文件 @
f78c57b4
...
...
@@ -21,6 +21,7 @@ from . import diou_loss
from
.
import
iou_loss
from
.
import
balanced_l1_loss
from
.
import
fcos_loss
from
.
import
diou_loss_yolo
from
.yolo_loss
import
*
from
.smooth_l1_loss
import
*
...
...
@@ -29,3 +30,4 @@ from .diou_loss import *
from
.iou_loss
import
*
from
.balanced_l1_loss
import
*
from
.fcos_loss
import
*
from
.diou_loss_yolo
import
*
ppdet/modeling/losses/diou_loss_yolo.py
0 → 100644
浏览文件 @
f78c57b4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.initializer
import
NumpyArrayInitializer
from
paddle
import
fluid
from
ppdet.core.workspace
import
register
,
serializable
from
.iou_loss
import
IouLoss
__all__
=
[
'DiouLossYolo'
]
@
register
@
serializable
class
DiouLossYolo
(
IouLoss
):
"""
Distance-IoU Loss, see https://arxiv.org/abs/1911.08287
Args:
loss_weight (float): diou loss weight, default is 5
max_height (int): max height of input to support random shape input
max_width (int): max width of input to support random shape input
"""
def
__init__
(
self
,
loss_weight
=
5
,
max_height
=
608
,
max_width
=
608
):
self
.
_loss_weight
=
loss_weight
self
.
_MAX_HI
=
max_height
self
.
_MAX_WI
=
max_width
def
__call__
(
self
,
x
,
y
,
w
,
h
,
tx
,
ty
,
tw
,
th
,
anchors
,
downsample_ratio
,
batch_size
,
eps
=
1.e-10
):
'''
Args:
x | y | w | h ([Variables]): the output of yolov3 for encoded x|y|w|h
tx |ty |tw |th ([Variables]): the target of yolov3 for encoded x|y|w|h
anchors ([float]): list of anchors for current output layer
downsample_ratio (float): the downsample ratio for current output layer
batch_size (int): training batch size
eps (float): the decimal to prevent the denominator eqaul zero
'''
x1
,
y1
,
x2
,
y2
=
self
.
_bbox_transform
(
x
,
y
,
w
,
h
,
anchors
,
downsample_ratio
,
batch_size
,
False
)
x1g
,
y1g
,
x2g
,
y2g
=
self
.
_bbox_transform
(
tx
,
ty
,
tw
,
th
,
anchors
,
downsample_ratio
,
batch_size
,
True
)
#central coordinates
cx
=
(
x1
+
x2
)
/
2
cy
=
(
y1
+
y2
)
/
2
w
=
x2
-
x1
h
=
y2
-
y1
cxg
=
(
x1g
+
x2g
)
/
2
cyg
=
(
y1g
+
y2g
)
/
2
wg
=
x2g
-
x1g
hg
=
y2g
-
y1g
x2
=
fluid
.
layers
.
elementwise_max
(
x1
,
x2
)
y2
=
fluid
.
layers
.
elementwise_max
(
y1
,
y2
)
# A and B
xkis1
=
fluid
.
layers
.
elementwise_max
(
x1
,
x1g
)
ykis1
=
fluid
.
layers
.
elementwise_max
(
y1
,
y1g
)
xkis2
=
fluid
.
layers
.
elementwise_min
(
x2
,
x2g
)
ykis2
=
fluid
.
layers
.
elementwise_min
(
y2
,
y2g
)
# A or B
xc1
=
fluid
.
layers
.
elementwise_min
(
x1
,
x1g
)
yc1
=
fluid
.
layers
.
elementwise_min
(
y1
,
y1g
)
xc2
=
fluid
.
layers
.
elementwise_max
(
x2
,
x2g
)
yc2
=
fluid
.
layers
.
elementwise_max
(
y2
,
y2g
)
intsctk
=
(
xkis2
-
xkis1
)
*
(
ykis2
-
ykis1
)
intsctk
=
intsctk
*
fluid
.
layers
.
greater_than
(
xkis2
,
xkis1
)
*
fluid
.
layers
.
greater_than
(
ykis2
,
ykis1
)
unionk
=
(
x2
-
x1
)
*
(
y2
-
y1
)
+
(
x2g
-
x1g
)
*
(
y2g
-
y1g
)
-
intsctk
+
eps
iouk
=
intsctk
/
unionk
# diou_loss
dist_intersection
=
(
cx
-
cxg
)
*
(
cx
-
cxg
)
+
(
cy
-
cyg
)
*
(
cy
-
cyg
)
dist_union
=
(
xc2
-
xc1
)
*
(
xc2
-
xc1
)
+
(
yc2
-
yc1
)
*
(
yc2
-
yc1
)
diou_term
=
(
dist_intersection
+
eps
)
/
(
dist_union
+
eps
)
loss_diou
=
1.
-
iouk
+
diou_term
loss_diou
=
loss_diou
*
self
.
_loss_weight
return
loss_diou
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录