未验证 提交 f76f42c2 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #13260 from luotao1/all_data

 add test_all_data in test_analyzer_ner
...@@ -114,12 +114,6 @@ void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data, ...@@ -114,12 +114,6 @@ void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1)); PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
input_slots->assign({input_tensor}); input_slots->assign({input_tensor});
} }
static void PrintTime(const double latency, const int bs, const int repeat) {
LOG(INFO) << "===========profile result===========";
LOG(INFO) << "batch_size: " << bs << ", repeat: " << repeat
<< ", avg latency: " << latency / repeat << "ms";
LOG(INFO) << "=====================================";
}
void BenchAllData(const std::string &model_path, const std::string &data_file, void BenchAllData(const std::string &model_path, const std::string &data_file,
const int batch_size, const int repeat) { const int batch_size, const int repeat) {
NativeConfig config; NativeConfig config;
...@@ -145,7 +139,7 @@ void BenchAllData(const std::string &model_path, const std::string &data_file, ...@@ -145,7 +139,7 @@ void BenchAllData(const std::string &model_path, const std::string &data_file,
sum += timer.toc(); sum += timer.toc();
} }
} }
PrintTime(sum, batch_size, repeat); PrintTime(batch_size, repeat, 1, 0, sum / repeat);
} }
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25, const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43, 25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
...@@ -176,7 +170,7 @@ void TestLACPrediction(const std::string &model_path, ...@@ -176,7 +170,7 @@ void TestLACPrediction(const std::string &model_path,
for (int i = 0; i < repeat; i++) { for (int i = 0; i < repeat; i++) {
predictor->Run(input_slots, &outputs_slots); predictor->Run(input_slots, &outputs_slots);
} }
PrintTime(timer.toc(), batch_size, repeat); PrintTime(batch_size, repeat, 1, 0, timer.toc() / repeat);
EXPECT_EQ(outputs_slots.size(), 1UL); EXPECT_EQ(outputs_slots.size(), 1UL);
auto &out = outputs_slots[0]; auto &out = outputs_slots[0];
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1, size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
......
...@@ -25,6 +25,7 @@ DEFINE_string(infer_model, "", "model path"); ...@@ -25,6 +25,7 @@ DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data path"); DEFINE_string(infer_data, "", "data path");
DEFINE_int32(batch_size, 10, "batch size."); DEFINE_int32(batch_size, 10, "batch size.");
DEFINE_int32(repeat, 1, "Running the inference program repeat times."); DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
namespace paddle { namespace paddle {
namespace inference { namespace inference {
...@@ -35,6 +36,7 @@ struct DataRecord { ...@@ -35,6 +36,7 @@ struct DataRecord {
std::vector<size_t> lod; // two inputs have the same lod info. std::vector<size_t> lod; // two inputs have the same lod info.
size_t batch_iter{0}; size_t batch_iter{0};
size_t batch_size{1}; size_t batch_size{1};
size_t num_samples; // total number of samples
DataRecord() = default; DataRecord() = default;
explicit DataRecord(const std::string &path, int batch_size = 1) explicit DataRecord(const std::string &path, int batch_size = 1)
: batch_size(batch_size) { : batch_size(batch_size) {
...@@ -81,6 +83,7 @@ struct DataRecord { ...@@ -81,6 +83,7 @@ struct DataRecord {
word_data_all.push_back(std::move(word_data)); word_data_all.push_back(std::move(word_data));
mention_data_all.push_back(std::move(mention_data)); mention_data_all.push_back(std::move(mention_data));
} }
num_samples = num_lines;
} }
}; };
...@@ -120,21 +123,38 @@ void TestChineseNERPrediction() { ...@@ -120,21 +123,38 @@ void TestChineseNERPrediction() {
auto predictor = auto predictor =
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config); CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
std::vector<PaddleTensor> input_slots; std::vector<PaddleTensor> input_slots;
DataRecord data(FLAGS_infer_data, FLAGS_batch_size); std::vector<PaddleTensor> outputs;
Timer timer;
if (FLAGS_test_all_data) {
LOG(INFO) << "test all data";
double sum = 0;
size_t num_samples;
for (int i = 0; i < FLAGS_repeat; i++) {
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
num_samples = data.num_samples;
for (size_t bid = 0; bid < num_samples; ++bid) {
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
timer.tic();
predictor->Run(input_slots, &outputs);
sum += timer.toc();
}
}
LOG(INFO) << "total number of samples: " << num_samples;
PrintTime(FLAGS_batch_size, FLAGS_repeat, 1, 0, sum / FLAGS_repeat);
LOG(INFO) << "average latency of each sample: "
<< sum / FLAGS_repeat / num_samples;
return;
}
// Prepare inputs. // Prepare inputs.
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
PrepareInputs(&input_slots, &data, FLAGS_batch_size); PrepareInputs(&input_slots, &data, FLAGS_batch_size);
std::vector<PaddleTensor> outputs;
Timer timer;
timer.tic(); timer.tic();
for (int i = 0; i < FLAGS_repeat; i++) { for (int i = 0; i < FLAGS_repeat; i++) {
predictor->Run(input_slots, &outputs); predictor->Run(input_slots, &outputs);
} }
LOG(INFO) << "===========profile result==========="; PrintTime(FLAGS_batch_size, FLAGS_repeat, 1, 0, timer.toc() / FLAGS_repeat);
LOG(INFO) << "batch_size: " << FLAGS_batch_size
<< ", repeat: " << FLAGS_repeat
<< ", latency: " << timer.toc() / FLAGS_repeat << "ms";
LOG(INFO) << "=====================================";
PADDLE_ENFORCE(outputs.size(), 1UL); PADDLE_ENFORCE(outputs.size(), 1UL);
auto &out = outputs[0]; auto &out = outputs[0];
......
...@@ -31,25 +31,11 @@ DEFINE_int32(repeat, 1, "How many times to repeat run."); ...@@ -31,25 +31,11 @@ DEFINE_int32(repeat, 1, "How many times to repeat run.");
DEFINE_int32(topn, -1, "Run top n batches of data to save time"); DEFINE_int32(topn, -1, "Run top n batches of data to save time");
namespace paddle { namespace paddle {
namespace inference {
template <typename T>
std::string to_string(const std::vector<T> &vec) {
std::stringstream ss;
for (const auto &c : vec) {
ss << c << " ";
}
return ss.str();
}
void PrintTime(const double latency, const int bs, const int repeat) {
LOG(INFO) << "===========profile result===========";
LOG(INFO) << "batch_size: " << bs << ", repeat: " << repeat
<< ", avg latency: " << latency / repeat << "ms";
LOG(INFO) << "=====================================";
}
struct DataReader { struct DataReader {
DataReader(const std::string &path) : file(new std::ifstream(path)) {} explicit DataReader(const std::string &path)
: file(new std::ifstream(path)) {}
bool NextBatch(PaddleTensor *tensor, int batch_size) { bool NextBatch(PaddleTensor *tensor, int batch_size) {
PADDLE_ENFORCE_EQ(batch_size, 1); PADDLE_ENFORCE_EQ(batch_size, 1);
...@@ -107,8 +93,7 @@ void Main(int batch_size) { ...@@ -107,8 +93,7 @@ void Main(int batch_size) {
++num_batches; ++num_batches;
} }
} }
PrintTime(batch_size, FLAGS_repeat, 1, 0, sum / FLAGS_repeat);
PrintTime(sum, batch_size, num_batches);
// Get output // Get output
LOG(INFO) << "get outputs " << output_slots.size(); LOG(INFO) << "get outputs " << output_slots.size();
...@@ -129,4 +114,5 @@ void Main(int batch_size) { ...@@ -129,4 +114,5 @@ void Main(int batch_size) {
TEST(text_classification, basic) { Main(FLAGS_batch_size); } TEST(text_classification, basic) { Main(FLAGS_batch_size); }
} // namespace inference
} // namespace paddle } // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册