Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f6f5cdaa
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f6f5cdaa
编写于
8月 14, 2018
作者:
S
sneaxiy
提交者:
GitHub
8月 14, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12555 from sneaxiy/refine_layer_norm
Refine layer_norm op
上级
9d6243b6
c50c5377
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
506 addition
and
2 deletion
+506
-2
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+1
-1
paddle/fluid/operators/layer_norm_op.cu
paddle/fluid/operators/layer_norm_op.cu
+505
-1
未找到文件。
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
f6f5cdaa
...
...
@@ -273,9 +273,9 @@ op_library(squeeze_op DEPS reshape_op)
op_library
(
extract_rows_op DEPS memory
)
op_library
(
flatten_op DEPS reshape_op
)
if
(
WITH_GPU
)
op_library
(
conv_op DEPS vol2col depthwise_conv im2col
)
op_library
(
layer_norm_op DEPS cub
)
else
()
op_library
(
conv_op DEPS vol2col im2col
)
endif
()
...
...
paddle/fluid/operators/layer_norm_op.cu
浏览文件 @
f6f5cdaa
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -12,8 +12,512 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cub/cub.cuh>
#include "paddle/fluid/operators/layer_norm_op.h"
namespace
paddle
{
namespace
operators
{
inline
static
int
GetDesiredBlockDim
(
int
block_dim
)
{
const
int
kMaxBlockDim
=
512
;
return
block_dim
>=
kMaxBlockDim
?
kMaxBlockDim
:
(
1
<<
(
static_cast
<
int
>
(
std
::
log2f
(
block_dim
))));
}
#define FIXED_BLOCK_DIM_CASE_BASE(log2_block_dim, ...) \
case (1 << (log2_block_dim)): { \
constexpr auto kBlockDim = (1 << (log2_block_dim)); \
__VA_ARGS__; \
} break
#define FIXED_BLOCK_DIM_CASE(...) \
FIXED_BLOCK_DIM_CASE_BASE(9, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(8, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(7, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(6, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(5, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(4, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(3, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(2, ##__VA_ARGS__); \
FIXED_BLOCK_DIM_CASE_BASE(1, ##__VA_ARGS__)
static
__device__
__forceinline__
float
real_sqrt
(
float
x
)
{
return
sqrtf
(
x
);
}
static
__device__
__forceinline__
double
real_sqrt
(
double
x
)
{
return
sqrt
(
x
);
}
template
<
typename
T
>
struct
PairForLayerNorm
{
__device__
__forceinline__
PairForLayerNorm
()
{}
__device__
__forceinline__
PairForLayerNorm
(
const
T
&
first
,
const
T
&
second
)
:
first_
(
first
),
second_
(
second
)
{}
T
first_
;
T
second_
;
};
template
<
typename
T
>
struct
PairForLayerNormAddFunctor
{
__device__
__forceinline__
PairForLayerNorm
<
T
>
operator
()(
const
PairForLayerNorm
<
T
>
&
p1
,
const
PairForLayerNorm
<
T
>
&
p2
)
{
return
PairForLayerNorm
<
T
>
(
p1
.
first_
+
p2
.
first_
,
p1
.
second_
+
p2
.
second_
);
}
};
template
<
typename
T
,
int
BlockDim
>
__global__
void
LayerNormForward
(
const
T
*
x
,
const
T
*
scale
,
const
T
*
bias
,
T
*
y
,
T
*
mean
,
T
*
var
,
float
epsilon
,
int
feature_size
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
PairForLayerNorm
<
T
>
,
BlockDim
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
int
beg_idx
=
blockIdx
.
x
*
feature_size
+
threadIdx
.
x
;
int
end_idx
=
(
blockIdx
.
x
+
1
)
*
feature_size
;
// Step 1: Reduce to calculate mean and var
T
mean_val
=
static_cast
<
T
>
(
0
);
T
var_val
=
static_cast
<
T
>
(
0
);
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
T
tmp
=
x
[
i
];
mean_val
+=
tmp
;
var_val
+=
(
tmp
*
tmp
);
}
auto
pair
=
BlockReduce
(
temp_storage
)
.
Reduce
(
PairForLayerNorm
<
T
>
(
mean_val
,
var_val
),
PairForLayerNormAddFunctor
<
T
>
());
if
(
threadIdx
.
x
==
0
)
{
auto
tmp
=
pair
.
first_
/
feature_size
;
mean
[
blockIdx
.
x
]
=
tmp
;
var
[
blockIdx
.
x
]
=
pair
.
second_
/
feature_size
-
tmp
*
tmp
;
}
__syncthreads
();
mean_val
=
mean
[
blockIdx
.
x
];
var_val
=
static_cast
<
T
>
(
real_sqrt
(
var
[
blockIdx
.
x
]
+
epsilon
));
// Step 2: Calculate y
if
(
scale
!=
nullptr
)
{
if
(
bias
!=
nullptr
)
{
for
(
int
i
=
beg_idx
,
j
=
threadIdx
.
x
;
i
<
end_idx
;
i
+=
BlockDim
,
j
+=
BlockDim
)
{
y
[
i
]
=
scale
[
j
]
*
(
x
[
i
]
-
mean_val
)
/
var_val
+
bias
[
j
];
}
}
else
{
for
(
int
i
=
beg_idx
,
j
=
threadIdx
.
x
;
i
<
end_idx
;
i
+=
BlockDim
,
j
+=
BlockDim
)
{
y
[
i
]
=
scale
[
j
]
*
(
x
[
i
]
-
mean_val
)
/
var_val
;
}
}
}
else
{
// scale == nullptr
if
(
bias
!=
nullptr
)
{
for
(
int
i
=
beg_idx
,
j
=
threadIdx
.
x
;
i
<
end_idx
;
i
+=
BlockDim
,
j
+=
BlockDim
)
{
y
[
i
]
=
(
x
[
i
]
-
mean_val
)
/
var_val
+
bias
[
j
];
}
}
else
{
for
(
int
i
=
beg_idx
,
j
=
threadIdx
.
x
;
i
<
end_idx
;
i
+=
BlockDim
,
j
+=
BlockDim
)
{
y
[
i
]
=
(
x
[
i
]
-
mean_val
)
/
var_val
;
}
}
}
}
// Make sure that d_scale != nullptr && d_bias != nullptr
// Since d_scale != nullptr, scale would not be nullptr
template
<
typename
T
,
int
BlockDim
,
bool
HasDx
>
__global__
void
LayerNormBackwardGradientAll
(
const
T
*
x
,
const
T
*
d_y
,
T
*
d_scale
,
T
*
d_bias
,
T
*
d_x
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
scale
,
float
epsilon
,
int
batch_size
,
int
feature_size
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
PairForLayerNorm
<
T
>
,
BlockDim
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
int
beg_idx
=
threadIdx
.
x
*
feature_size
+
blockIdx
.
x
;
int
end_idx
=
batch_size
*
feature_size
+
blockIdx
.
x
;
int
stride
=
BlockDim
*
feature_size
;
T
d_scale_partial
=
0
,
d_bias_partial
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
stride
)
{
int
row_idx
=
i
/
feature_size
;
auto
var_val
=
static_cast
<
T
>
(
real_sqrt
(
var
[
row_idx
]
+
epsilon
));
d_scale_partial
+=
d_y
[
i
]
*
(
x
[
i
]
-
mean
[
row_idx
])
/
var_val
;
d_bias_partial
+=
d_y
[
i
];
if
(
HasDx
)
{
d_x
[
i
]
=
d_y
[
i
]
*
scale
[
blockIdx
.
x
]
/
var_val
;
}
}
auto
pair
=
BlockReduce
(
temp_storage
)
.
Reduce
(
PairForLayerNorm
<
T
>
(
d_scale_partial
,
d_bias_partial
),
PairForLayerNormAddFunctor
<
T
>
());
if
(
threadIdx
.
x
==
0
)
{
d_scale
[
blockIdx
.
x
]
=
pair
.
first_
;
d_bias
[
blockIdx
.
x
]
=
pair
.
second_
;
}
}
// Make sure that there is only one true expression: d_scale != nullptr
// or d_bias != nullptr
// Notice: scale may be nullptr
template
<
typename
T
,
int
BlockDim
,
bool
HasDx
,
bool
HasDScale
>
__global__
void
LayerNormBackwardGradientScaleOrBias
(
const
T
*
x
,
const
T
*
d_y
,
T
*
d_scale
,
T
*
d_bias
,
T
*
d_x
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
scale
,
float
epsilon
,
int
batch_size
,
int
feature_size
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
T
,
BlockDim
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
int
beg_idx
=
threadIdx
.
x
*
feature_size
+
blockIdx
.
x
;
int
end_idx
=
batch_size
*
feature_size
+
blockIdx
.
x
;
int
stride
=
BlockDim
*
feature_size
;
T
d_scale_or_d_bias_partial
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
stride
)
{
int
row_idx
=
i
/
feature_size
;
auto
var_val
=
static_cast
<
T
>
(
real_sqrt
(
var
[
row_idx
]
+
epsilon
));
if
(
HasDScale
)
{
d_scale_or_d_bias_partial
+=
d_y
[
i
]
*
(
x
[
i
]
-
mean
[
row_idx
])
/
var_val
;
}
else
{
// d_bias != nullptr
d_scale_or_d_bias_partial
+=
d_y
[
i
];
}
if
(
HasDx
)
{
if
(
scale
!=
nullptr
)
{
d_x
[
i
]
=
d_y
[
i
]
*
scale
[
blockIdx
.
x
]
/
var_val
;
}
else
{
d_x
[
i
]
=
d_y
[
i
]
/
var_val
;
}
}
}
d_scale_or_d_bias_partial
=
BlockReduce
(
temp_storage
).
Reduce
(
d_scale_or_d_bias_partial
,
cub
::
Sum
());
if
(
threadIdx
.
x
==
0
)
{
if
(
HasDScale
)
{
d_scale
[
blockIdx
.
x
]
=
d_scale_or_d_bias_partial
;
}
else
{
d_bias
[
blockIdx
.
x
]
=
d_scale_or_d_bias_partial
;
}
}
}
template
<
typename
T
,
int
BlockDim
>
__global__
void
LayerNormBackwardPostProcessToCalculateDX
(
const
T
*
x
,
T
*
d_x
,
const
T
*
mean
,
const
T
*
var
,
float
epsilon
,
int
feature_size
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
PairForLayerNorm
<
T
>
,
BlockDim
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
__shared__
T
d_x_reduce_tmp
[
2
];
int
beg_idx
=
blockIdx
.
x
*
feature_size
+
threadIdx
.
x
;
int
end_idx
=
(
blockIdx
.
x
+
1
)
*
feature_size
;
T
block_mean
=
mean
[
blockIdx
.
x
];
T
block_var
=
var
[
blockIdx
.
x
];
T
d_x_mean_partial
=
0
,
d_x_var_partial
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
d_x_mean_partial
+=
d_x
[
i
];
d_x_var_partial
+=
d_x
[
i
]
*
(
x
[
i
]
-
block_mean
);
}
auto
pair
=
BlockReduce
(
temp_storage
)
.
Reduce
(
PairForLayerNorm
<
T
>
(
d_x_mean_partial
,
d_x_var_partial
),
PairForLayerNormAddFunctor
<
T
>
());
if
(
threadIdx
.
x
==
0
)
{
d_x_reduce_tmp
[
0
]
=
pair
.
first_
/
feature_size
;
d_x_reduce_tmp
[
1
]
=
pair
.
second_
/
(
feature_size
*
(
block_var
+
epsilon
));
}
__syncthreads
();
d_x_mean_partial
=
d_x_reduce_tmp
[
0
];
d_x_var_partial
=
d_x_reduce_tmp
[
1
];
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
d_x
[
i
]
-=
d_x_mean_partial
;
d_x
[
i
]
-=
(
x
[
i
]
-
block_mean
)
*
d_x_var_partial
;
}
}
// Here, we only calculate d_x
template
<
typename
T
,
int
BlockDim
>
__global__
void
LayerNormBackwardGradientOnlyDX
(
const
T
*
x
,
const
T
*
d_y
,
T
*
d_x
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
scale
,
float
epsilon
,
int
feature_size
)
{
using
BlockReduce
=
cub
::
BlockReduce
<
PairForLayerNorm
<
T
>
,
BlockDim
>
;
__shared__
typename
BlockReduce
::
TempStorage
temp_storage
;
__shared__
T
d_x_reduce_tmp
[
2
];
int
beg_idx
=
blockIdx
.
x
*
feature_size
+
threadIdx
.
x
;
int
end_idx
=
(
blockIdx
.
x
+
1
)
*
feature_size
;
T
block_mean
=
mean
[
blockIdx
.
x
],
block_var
=
var
[
blockIdx
.
x
];
T
d_x_mean_partial
=
0
,
d_x_var_partial
=
0
;
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
auto
var_val
=
static_cast
<
T
>
(
real_sqrt
(
block_var
+
epsilon
));
if
(
scale
!=
nullptr
)
{
int
col_idx
=
i
%
feature_size
;
d_x
[
i
]
=
d_y
[
i
]
*
scale
[
col_idx
]
/
var_val
;
}
else
{
d_x
[
i
]
=
d_y
[
i
]
/
var_val
;
}
d_x_mean_partial
+=
d_x
[
i
];
d_x_var_partial
+=
d_x
[
i
]
*
(
x
[
i
]
-
block_mean
);
}
auto
pair
=
BlockReduce
(
temp_storage
)
.
Reduce
(
PairForLayerNorm
<
T
>
(
d_x_mean_partial
,
d_x_var_partial
),
PairForLayerNormAddFunctor
<
T
>
());
if
(
threadIdx
.
x
==
0
)
{
d_x_reduce_tmp
[
0
]
=
pair
.
first_
/
feature_size
;
d_x_reduce_tmp
[
1
]
=
pair
.
second_
/
(
feature_size
*
(
block_var
+
epsilon
));
}
__syncthreads
();
d_x_mean_partial
=
d_x_reduce_tmp
[
0
];
d_x_var_partial
=
d_x_reduce_tmp
[
1
];
for
(
int
i
=
beg_idx
;
i
<
end_idx
;
i
+=
BlockDim
)
{
d_x
[
i
]
-=
d_x_mean_partial
;
d_x
[
i
]
-=
(
x
[
i
]
-
block_mean
)
*
d_x_var_partial
;
}
}
template
<
typename
T
>
__global__
void
LayerNormBackwardWhenBatchSizeIsOne
(
const
T
*
x
,
const
T
*
d_y
,
T
*
d_x
,
T
*
d_scale
,
T
*
d_bias
,
const
T
*
mean
,
const
T
*
var
,
const
T
*
scale
,
float
epsilon
,
int
feature_size
)
{
int
idx
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
idx
<
feature_size
)
{
auto
var_val
=
static_cast
<
T
>
(
real_sqrt
(
var
[
idx
]
+
epsilon
));
if
(
d_x
!=
nullptr
)
{
if
(
d_scale
==
nullptr
)
{
d_x
[
idx
]
=
d_y
[
idx
]
/
var_val
;
}
else
{
d_x
[
idx
]
=
d_y
[
idx
]
*
scale
[
idx
]
/
var_val
;
}
}
if
(
d_scale
!=
nullptr
)
{
d_scale
[
idx
]
=
d_y
[
idx
]
*
(
x
[
idx
]
-
mean
[
idx
])
/
var_val
;
}
if
(
d_bias
!=
nullptr
)
d_bias
[
idx
]
=
d_y
[
idx
];
}
}
template
<
typename
T
>
static
void
LayerNormBackward
(
const
T
*
x
,
const
T
*
d_y
,
const
T
*
scale
,
const
T
*
mean
,
const
T
*
var
,
T
*
d_x
,
T
*
d_scale
,
T
*
d_bias
,
float
epsilon
,
int
batch_size
,
int
feature_size
,
cudaStream_t
stream
)
{
const
int
kMaxBlockDim
=
512
;
int
gradient_flag
=
((
d_x
!=
nullptr
?
1
:
0
)
<<
2
)
|
((
d_scale
!=
nullptr
?
1
:
0
)
<<
1
)
|
((
d_bias
!=
nullptr
?
1
:
0
));
if
(
gradient_flag
==
0
)
return
;
if
(
batch_size
==
1
)
{
LayerNormBackwardWhenBatchSizeIsOne
<
T
><<<
(
feature_size
+
kMaxBlockDim
-
1
)
/
kMaxBlockDim
,
kMaxBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_x
,
d_scale
,
d_bias
,
mean
,
var
,
scale
,
epsilon
,
feature_size
);
if
(
d_x
!=
nullptr
)
{
switch
(
GetDesiredBlockDim
(
feature_size
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardPostProcessToCalculateDX
<
T
,
kBlockDim
><<<
1
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_x
,
mean
,
var
,
epsilon
,
feature_size
));
}
}
return
;
}
auto
block_dim
=
GetDesiredBlockDim
(
batch_size
);
switch
(
gradient_flag
)
{
case
1
:
// d_x == nulptr, d_scale == nullptr, d_bias != nullptr
switch
(
block_dim
)
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientScaleOrBias
<
T
,
kBlockDim
,
false
,
false
><<<
feature_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_scale
,
d_bias
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
batch_size
,
feature_size
));
}
break
;
case
2
:
// d_x == nullptr, d_scale != nullptr, d_bias == nullptr
switch
(
block_dim
)
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientScaleOrBias
<
T
,
kBlockDim
,
false
,
true
><<<
feature_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_scale
,
d_bias
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
batch_size
,
feature_size
));
}
break
;
case
3
:
// d_x == nullptr, d_scale != nulptr, d_bias != nullptr
switch
(
block_dim
)
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientAll
<
T
,
kBlockDim
,
false
><<<
feature_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_scale
,
d_bias
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
batch_size
,
feature_size
));
}
break
;
case
4
:
// d_x != nullptr, d_scale == nullptr, d_bias == nullptr
switch
(
GetDesiredBlockDim
(
feature_size
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientOnlyDX
<
T
,
kBlockDim
><<<
batch_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
feature_size
));
}
break
;
case
5
:
// d_x != nulptr, d_scale == nullptr, d_bias != nullptr
switch
(
block_dim
)
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientScaleOrBias
<
T
,
kBlockDim
,
true
,
false
><<<
feature_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_scale
,
d_bias
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
batch_size
,
feature_size
));
}
switch
(
GetDesiredBlockDim
(
feature_size
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardPostProcessToCalculateDX
<
T
,
kBlockDim
><<<
batch_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_x
,
mean
,
var
,
epsilon
,
feature_size
));
}
break
;
case
6
:
// d_x != nullptr, d_scale != nullptr, d_bias == nullptr
switch
(
block_dim
)
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientScaleOrBias
<
T
,
kBlockDim
,
true
,
true
><<<
feature_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_scale
,
d_bias
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
batch_size
,
feature_size
));
}
switch
(
GetDesiredBlockDim
(
feature_size
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardPostProcessToCalculateDX
<
T
,
kBlockDim
><<<
batch_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_x
,
mean
,
var
,
epsilon
,
feature_size
));
}
break
;
case
7
:
// d_x != nullptr, d_scale != nullptr, d_bias != nullptr
switch
(
block_dim
)
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardGradientAll
<
T
,
kBlockDim
,
true
><<<
feature_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_y
,
d_scale
,
d_bias
,
d_x
,
mean
,
var
,
scale
,
epsilon
,
batch_size
,
feature_size
));
}
switch
(
GetDesiredBlockDim
(
feature_size
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormBackwardPostProcessToCalculateDX
<
T
,
kBlockDim
><<<
batch_size
,
kBlockDim
,
0
,
stream
>>>
(
x
,
d_x
,
mean
,
var
,
epsilon
,
feature_size
));
}
break
;
default:
break
;
}
}
template
<
typename
T
>
class
LayerNormKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
const
auto
x_dims
=
x
->
dims
();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
mean_data
=
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
var_data
=
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
scale_data
=
(
scale
==
nullptr
?
nullptr
:
scale
->
data
<
T
>
());
auto
*
bias_data
=
(
bias
==
nullptr
?
nullptr
:
bias
->
data
<
T
>
());
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
batch_size
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
feature_size
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
switch
(
GetDesiredBlockDim
(
feature_size
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormForward
<
T
,
kBlockDim
><<<
batch_size
,
kBlockDim
,
0
,
stream
>>>
(
x_data
,
scale_data
,
bias_data
,
y_data
,
mean_data
,
var_data
,
epsilon
,
feature_size
));
default:
PADDLE_THROW
(
"Product from begin_norm_axis to end must be larger than 1"
);
break
;
}
}
};
template
<
typename
T
>
class
LayerNormGradKernel
<
platform
::
CUDADeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
// d_x, d_scale, d_bias may be nullptr
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
d_y_data
=
d_y
->
data
<
T
>
();
auto
*
mean_data
=
mean
->
data
<
T
>
();
auto
*
var_data
=
var
->
data
<
T
>
();
auto
*
scale_data
=
(
scale
==
nullptr
?
nullptr
:
scale
->
data
<
T
>
());
auto
*
d_scale_data
=
(
d_scale
==
nullptr
?
nullptr
:
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
auto
*
d_bias_data
=
(
d_bias
==
nullptr
?
nullptr
:
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
auto
*
d_x_data
=
(
d_x
==
nullptr
?
nullptr
:
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
const
auto
&
x_dims
=
x
->
dims
();
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
batch_size
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
feature_size
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
LayerNormBackward
<
T
>
(
x_data
,
d_y_data
,
scale_data
,
mean_data
,
var_data
,
d_x_data
,
d_scale_data
,
d_bias_data
,
epsilon
,
batch_size
,
feature_size
,
stream
);
}
};
#undef FIXED_BLOCK_DIM_CASE_BASE
#undef FIXED_BLOCK_DIM_CASE
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
layer_norm
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录