Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f53e1d5c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f53e1d5c
编写于
2月 20, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
implement ClearBlock
上级
52e5ee60
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
152 addition
and
116 deletion
+152
-116
paddle/fluid/framework/block_desc.cc
paddle/fluid/framework/block_desc.cc
+14
-0
paddle/fluid/framework/block_desc.h
paddle/fluid/framework/block_desc.h
+2
-0
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+5
-5
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+24
-2
paddle/fluid/pybind/protobuf.cc
paddle/fluid/pybind/protobuf.cc
+3
-0
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+11
-4
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+93
-105
未找到文件。
paddle/fluid/framework/block_desc.cc
浏览文件 @
f53e1d5c
...
@@ -163,6 +163,20 @@ std::vector<OpDesc *> BlockDesc::AllOps() const {
...
@@ -163,6 +163,20 @@ std::vector<OpDesc *> BlockDesc::AllOps() const {
return
res
;
return
res
;
}
}
void
BlockDesc
::
ClearBlock
()
{
// clear all ops
ops_
.
clear
();
// clear all vars which are not persistable
for
(
auto
it
=
vars_
.
begin
();
it
!=
vars_
.
end
();)
{
if
(
it
->
second
->
Persistable
())
{
++
it
;
}
else
{
vars_
.
erase
(
it
++
);
}
}
}
void
BlockDesc
::
Flush
()
{
void
BlockDesc
::
Flush
()
{
for
(
auto
&
op_desc
:
ops_
)
{
for
(
auto
&
op_desc
:
ops_
)
{
op_desc
->
Flush
();
op_desc
->
Flush
();
...
...
paddle/fluid/framework/block_desc.h
浏览文件 @
f53e1d5c
...
@@ -97,6 +97,8 @@ class BlockDesc {
...
@@ -97,6 +97,8 @@ class BlockDesc {
std
::
vector
<
OpDesc
*>
AllOps
()
const
;
std
::
vector
<
OpDesc
*>
AllOps
()
const
;
void
ClearBlock
();
size_t
OpSize
()
const
{
return
ops_
.
size
();
}
size_t
OpSize
()
const
{
return
ops_
.
size
();
}
OpDesc
*
Op
(
int
idx
)
const
{
return
ops_
.
at
(
idx
).
get
();
}
OpDesc
*
Op
(
int
idx
)
const
{
return
ops_
.
at
(
idx
).
get
();
}
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
f53e1d5c
...
@@ -103,7 +103,9 @@ class OpBase;
...
@@ -103,7 +103,9 @@ class OpBase;
*/
*/
class
VarBase
{
class
VarBase
{
public:
public:
VarBase
(
std
::
string
name
)
:
VarBase
(
new
framework
::
Variable
(),
new
VarBase
(
name
+
"XGRAD"
,
true
),
name
)
{}
explicit
VarBase
(
std
::
string
name
)
:
VarBase
(
new
framework
::
Variable
(),
new
VarBase
(
name
+
"XGRAD"
,
true
),
name
)
{}
// Owns `var` and `grad`
// Owns `var` and `grad`
VarBase
(
framework
::
Variable
*
var
,
VarBase
*
grad
,
std
::
string
name
)
VarBase
(
framework
::
Variable
*
var
,
VarBase
*
grad
,
std
::
string
name
)
...
@@ -113,7 +115,7 @@ class VarBase {
...
@@ -113,7 +115,7 @@ class VarBase {
stop_gradient_
(
false
),
stop_gradient_
(
false
),
pre_op_
(
nullptr
),
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
),
pre_op_out_idx_
(
-
1
),
name_
(
name
)
{
LOG
(
ERROR
)
<<
"create "
<<
name
;
}
name_
(
name
)
{}
explicit
VarBase
(
std
::
string
name
,
bool
stop_gradient
)
explicit
VarBase
(
std
::
string
name
,
bool
stop_gradient
)
:
var_desc_
(
nullptr
),
:
var_desc_
(
nullptr
),
...
@@ -122,11 +124,9 @@ class VarBase {
...
@@ -122,11 +124,9 @@ class VarBase {
stop_gradient_
(
stop_gradient
),
stop_gradient_
(
stop_gradient
),
pre_op_
(
nullptr
),
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
),
pre_op_out_idx_
(
-
1
),
name_
(
name
)
{
LOG
(
ERROR
)
<<
"create "
<<
name
;
}
name_
(
name
)
{}
virtual
~
VarBase
()
{
virtual
~
VarBase
()
{
LOG
(
ERROR
)
<<
"delete "
<<
name_
;
if
(
var_
)
{
if
(
var_
)
{
delete
var_
;
delete
var_
;
}
}
...
...
paddle/fluid/imperative/tracer.cc
浏览文件 @
f53e1d5c
...
@@ -66,16 +66,38 @@ platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
...
@@ -66,16 +66,38 @@ platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
return
result
;
return
result
;
}
}
// framework::BlockDesc* InferShapeAndVarType(OpBase* op, const VarBasePtrMap&
// inputs, const VarBasePtrMap& outputs) {
// std::unique_ptr<BlockDesc> block(new BlockDesc());
// // construct op desc
// op->op_desc_ = block.AppendOp();
// // construct op inputs and outputs
// // for
// //
// for (auto it = )
// op->op_desc_->SetInput()
// op->op_desc_->InferShape(*block);
// op->op_desc_->InferVarType(block.get());
// return block.release();
// }
void
Tracer
::
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
void
Tracer
::
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
framework
::
BlockDesc
*
block
,
const
VarBasePtrMap
&
outputs
,
framework
::
BlockDesc
*
block
,
const
platform
::
Place
expected_place
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
)
{
const
bool
stop_gradient
)
{
std
::
map
<
std
::
string
,
VarBase
*>
vars
;
std
::
map
<
std
::
string
,
VarBase
*>
vars
;
// framework::BlockDesc* block = InferShapeAndVarType(op, inputs, outputs);
framework
::
OpDesc
*
op_desc
=
op
->
op_desc_
;
framework
::
OpDesc
*
op_desc
=
op
->
op_desc_
;
VLOG
(
3
)
<<
"tracer tracing "
<<
op_desc
->
Type
();
VLOG
(
3
)
<<
"tracer tracing "
<<
op_desc
->
Type
();
op_desc
->
InferShape
(
*
block
);
op_desc
->
InferShape
(
*
block
);
op_desc
->
InferVarType
(
block
);
op_desc
->
InferVarType
(
block
);
std
::
unique_ptr
<
framework
::
OperatorBase
>
op_base
=
std
::
unique_ptr
<
framework
::
OperatorBase
>
op_base
=
framework
::
OpRegistry
::
CreateOp
(
*
op_desc
);
framework
::
OpRegistry
::
CreateOp
(
*
op_desc
);
...
@@ -92,7 +114,7 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
...
@@ -92,7 +114,7 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
invars
.
emplace_back
(
inp
->
var_
);
invars
.
emplace_back
(
inp
->
var_
);
vars
[
inp
->
var_desc_
->
Name
()]
=
inp
;
vars
[
inp
->
var_desc_
->
Name
()]
=
inp
;
if
(
inp
->
PreOp
())
{
if
(
inp
->
PreOp
()
&&
!
inp
->
IsStopGradient
()
)
{
op
->
pre_ops_
[
it
.
first
].
push_back
(
inp
->
PreOp
());
op
->
pre_ops_
[
it
.
first
].
push_back
(
inp
->
PreOp
());
op
->
pre_ops_out_idx_
[
it
.
first
].
push_back
(
inp
->
PreOpOutIdx
());
op
->
pre_ops_out_idx_
[
it
.
first
].
push_back
(
inp
->
PreOpOutIdx
());
}
else
{
}
else
{
...
@@ -202,7 +224,7 @@ std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
...
@@ -202,7 +224,7 @@ std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
op
->
input_vars_
[
PyLayer
::
kFwdInp
]
=
inputs
;
op
->
input_vars_
[
PyLayer
::
kFwdInp
]
=
inputs
;
op
->
output_vars_
[
PyLayer
::
kFwdOut
]
=
PyLayer
::
Apply
(
op
->
forward_id_
,
inputs
);
op
->
output_vars_
[
PyLayer
::
kFwdOut
]
=
PyLayer
::
Apply
(
op
->
forward_id_
,
inputs
);
for
(
VarBase
*
inp
:
inputs
)
{
for
(
VarBase
*
inp
:
inputs
)
{
if
(
inp
->
PreOp
())
{
if
(
inp
->
PreOp
()
&&
!
inp
->
IsStopGradient
()
)
{
op
->
pre_ops_
[
PyLayer
::
kFwdInp
].
push_back
(
inp
->
PreOp
());
op
->
pre_ops_
[
PyLayer
::
kFwdInp
].
push_back
(
inp
->
PreOp
());
op
->
pre_ops_out_idx_
[
PyLayer
::
kFwdInp
].
push_back
(
inp
->
PreOpOutIdx
());
op
->
pre_ops_out_idx_
[
PyLayer
::
kFwdInp
].
push_back
(
inp
->
PreOpOutIdx
());
}
else
{
}
else
{
...
...
paddle/fluid/pybind/protobuf.cc
浏览文件 @
f53e1d5c
...
@@ -189,6 +189,9 @@ void BindBlockDesc(pybind11::module *m) {
...
@@ -189,6 +189,9 @@ void BindBlockDesc(pybind11::module *m) {
return
self
.
HasVar
(
name
);
return
self
.
HasVar
(
name
);
},
},
pybind11
::
return_value_policy
::
reference
)
pybind11
::
return_value_policy
::
reference
)
.
def
(
"_clear_block"
,
[](
pd
::
BlockDesc
&
self
)
{
return
self
.
ClearBlock
();
},
pybind11
::
return_value_policy
::
reference
)
.
def
(
"_rename_var"
,
.
def
(
"_rename_var"
,
[](
pd
::
BlockDesc
&
self
,
const
pybind11
::
bytes
&
byte_name
,
[](
pd
::
BlockDesc
&
self
,
const
pybind11
::
bytes
&
byte_name
,
const
pybind11
::
bytes
&
byte_name_new
)
{
const
pybind11
::
bytes
&
byte_name_new
)
{
...
...
python/paddle/fluid/framework.py
浏览文件 @
f53e1d5c
...
@@ -1188,6 +1188,15 @@ class Block(object):
...
@@ -1188,6 +1188,15 @@ class Block(object):
else
:
else
:
raise
ValueError
(
"Var {0} is not found recursively"
.
format
(
name
))
raise
ValueError
(
"Var {0} is not found recursively"
.
format
(
name
))
def
_clear_block
(
self
):
self
.
desc
.
_clear_block
()
for
name
,
var
in
self
.
vars
.
items
():
if
not
var
.
persistable
:
del
self
.
vars
[
name
]
self
.
ops
.
clear
()
def
all_parameters
(
self
):
def
all_parameters
(
self
):
return
list
(
self
.
iter_parameters
())
return
list
(
self
.
iter_parameters
())
...
@@ -1273,8 +1282,7 @@ class Block(object):
...
@@ -1273,8 +1282,7 @@ class Block(object):
return
var
return
var
def
_remove_var
(
self
,
name
):
def
_remove_var
(
self
,
name
):
if
not
_in_imperative_mode
():
self
.
_sync_with_cpp
()
self
.
_sync_with_cpp
()
self
.
desc
.
_remove_var
(
cpt
.
to_bytes
(
name
))
self
.
desc
.
_remove_var
(
cpt
.
to_bytes
(
name
))
del
self
.
vars
[
name
]
del
self
.
vars
[
name
]
...
@@ -1358,8 +1366,7 @@ class Block(object):
...
@@ -1358,8 +1366,7 @@ class Block(object):
Returns:
Returns:
None
None
"""
"""
if
not
_in_imperative_mode
():
self
.
_sync_with_cpp
()
self
.
_sync_with_cpp
()
self
.
desc
.
_remove_op
(
index
,
index
+
1
)
self
.
desc
.
_remove_op
(
index
,
index
+
1
)
del
self
.
ops
[
index
]
del
self
.
ops
[
index
]
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
f53e1d5c
...
@@ -101,7 +101,8 @@ class MNIST(fluid.imperative.Layer):
...
@@ -101,7 +101,8 @@ class MNIST(fluid.imperative.Layer):
class
TestImperativeMnist
(
unittest
.
TestCase
):
class
TestImperativeMnist
(
unittest
.
TestCase
):
def
test_mnist_float32
(
self
):
def
test_mnist_float32
(
self
):
seed
=
90
seed
=
90
batch_num
=
100000
epoch_num
=
1
batch_num
=
200
with
fluid
.
imperative
.
guard
():
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
@@ -109,125 +110,112 @@ class TestImperativeMnist(unittest.TestCase):
...
@@ -109,125 +110,112 @@ class TestImperativeMnist(unittest.TestCase):
mnist
=
MNIST
()
mnist
=
MNIST
()
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
,
drop_last
=
True
)
dy_param_init_value
=
{}
dy_param_init_value
=
{}
for
batch_id
,
data
in
enumerate
(
train_reader
()):
for
epoch
in
range
(
epoch_num
):
if
batch_id
>=
batch_num
:
print
(
"epoch"
,
epoch
)
break
for
batch_id
,
data
in
enumerate
(
train_reader
()):
# if batch_id >= batch_num:
dy_x_data
=
np
.
array
(
# break
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
128
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y_data
)
label
.
_stop_gradient
=
True
print
(
"forward start"
)
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
# dy_out = avg_loss._numpy()
print
(
"forward end"
)
# if batch_id == 0:
# for param in fluid.default_main_program().global_block(
# ).all_parameters():
# dy_param_init_value[param.name] = param._numpy()
avg_loss
.
_backward
()
print
(
"backward end"
)
sgd
.
minimize
(
avg_loss
)
print
(
"sgd end"
)
mnist
.
clear_gradients
()
import
gc
for
name
,
var
in
fluid
.
default_main_program
().
global_block
().
vars
.
items
():
if
not
var
.
persistable
:
fluid
.
default_main_program
().
global_block
().
_remove_var
(
name
)
# var._ivar._clear_values()
for
op
in
fluid
.
default_main_program
().
global_block
().
ops
:
fluid
.
default_main_program
().
global_block
().
_remove_op
(
op
.
idx
)
assert
len
(
gc
.
get_referrers
(
avg_loss
))
==
1
dy_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
128
,
1
)
print
(
"clear end"
)
img
=
to_variable
(
dy_x_data
)
print
(
"ivar ref "
,
gc
.
get_referrers
(
gc
.
get_referrers
(
avg_loss
.
_ivar
)[
0
])[
0
].
__class__
.
__name__
)
label
=
to_variable
(
y_data
)
print
(
"ivar ref "
,
gc
.
get_referrers
(
gc
.
get_referrers
(
avg_loss
.
_ivar
)[
1
])[
0
].
__class__
.
__name__
)
label
.
_stop_gradient
=
True
# dy_param_value = {}
cost
=
mnist
(
img
)
# for param in fluid.default_main_program().global_block(
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
# ).all_parameters():
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
# dy_param_value[param.name] = param._numpy()
# with new_program_scope():
dy_out
=
avg_loss
.
_numpy
()
# fluid.default_startup_program().random_seed = seed
# fluid.default_main_program().random_seed = seed
# exe = fluid.Executor(fluid.CPUPlace(
if
epoch
==
0
and
batch_id
==
0
:
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
# mnist = MNIST()
avg_loss
.
_backward
()
# sgd = SGDOptimizer(learning_rate=1e-3)
sgd
.
minimize
(
avg_loss
)
# train_reader = paddle.batch(
mnist
.
clear_gradients
()
# paddle.dataset.mnist.train(), batch_size=128)
# img = fluid.layers.data(
fluid
.
default_main_program
().
global_block
().
_clear_block
()
# name='pixel', shape=[1, 28, 28], dtype='float32')
# label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# cost = mnist(img)
# loss = fluid.layers.cross_entropy(cost, label)
# avg_loss = fluid.layers.mean(loss)
# sgd.minimize(avg_loss)
# # initialize params and fetch them
dy_param_value
=
{}
# static_param_init_value = {}
for
param
in
fluid
.
default_main_program
().
global_block
(
# static_param_name_list = []
).
all_parameters
():
# for param in fluid.default_startup_program().global_block(
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
# ).all_parameters():
# static_param_name_list.append(param.name)
# out = exe.run(fluid.default_startup_program(),
with
new_program_scope
():
# fetch_list=static_param_name_list)
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
# for i in range(len(static_param_name_list)):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
# static_param_init_value[static_param_name_list[i]] = out[i]
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
# for batch_id, data in enumerate(train_reader()):
mnist
=
MNIST
()
# if batch_id >= batch_num:
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
,
drop_last
=
True
)
img
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
sgd
.
minimize
(
avg_loss
)
# initialize params and fetch them
static_param_init_value
=
{}
static_param_name_list
=
[]
for
param
in
fluid
.
default_startup_program
().
global_block
(
).
all_parameters
():
static_param_name_list
.
append
(
param
.
name
)
out
=
exe
.
run
(
fluid
.
default_startup_program
(),
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_init_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
epoch
in
range
(
epoch_num
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
# if batch_id >= batch_num:
# break
# break
# static_x_data = np.array(
static_x_data
=
np
.
array
(
# [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
[
x
[
0
].
reshape
(
1
,
28
,
28
)
# y_data = np.array([x[1] for x in data]).astype('int64').reshape(
for
x
in
data
]).
astype
(
'float32'
)
# [128, 1])
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
([
128
,
1
])
# fetch_list = [avg_loss.name]
# fetch_list.extend(static_param_name_list)
fetch_list
=
[
avg_loss
.
name
]
# out = exe.run(fluid.default_main_program(),
fetch_list
.
extend
(
static_param_name_list
)
# feed={"pixel": static_x_data,
out
=
exe
.
run
(
# "label": y_data},
fluid
.
default_main_program
(),
# fetch_list=fetch_list)
feed
=
{
"pixel"
:
static_x_data
,
"label"
:
y_data
},
# static_param_value = {}
fetch_list
=
fetch_list
)
# static_out = out[0]
# for i in range(1, len(out)):
static_param_value
=
{}
# static_param_value[static_param_name_list[i - 1]] = out[i]
static_out
=
out
[
0
]
for
i
in
range
(
1
,
len
(
out
)):
# for key, value in six.iteritems(static_param_init_value):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
# self.assertTrue(np.allclose(value, dy_param_init_value[key]))
i
]
# self.assertTrue(np.allclose(static_out, dy_out))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
# for key, value in six.iteritems(static_param_value):
# self.assertTrue(np.allclose(value, dy_param_value[key]))
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
]))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录