(1) The DOTA dataset is trained together with train and val data as a training set, and the evaluation dataset configuration needs to be customized when evaluating the DOTA dataset.
(1) The DOTA dataset is trained together with train and val data as a training set, and the evaluation dataset configuration needs to be customized when evaluating the DOTA dataset.
(2) Bone dataset is transformed from segmented data. As there is little difference between different types of discs for detection tasks, and the score obtained by S2ANET algorithm is low, the default threshold for evaluation is 0.5, a low mAP is normal. You are advised to view the detection result visually.
(2) Bone dataset is transformed from segmented data. As there is little difference between different types of discs for detection tasks, and the score obtained by S2ANET algorithm is low, the default threshold for evaluation is 0.5, a low mAP is normal. You are advised to view the detection result visually.
...
@@ -164,7 +164,6 @@ The inputs of the `multiclass_nms` operator in Paddle support quadrilateral inpu
...
@@ -164,7 +164,6 @@ The inputs of the `multiclass_nms` operator in Paddle support quadrilateral inpu
Please refer to the deployment tutorial[Predict deployment](../../deploy/README_en.md)
Please refer to the deployment tutorial[Predict deployment](../../deploy/README_en.md)
**Attention:** The `is_training` parameter was added to the configuration file because the `paddle.Detach` function would cause the size error of the exported model when it went quiet, and the exported model would need to be set to `False` to predict deployment
@@ -88,7 +88,7 @@ PP-YOLO and PP-YOLOv2 improved performance and speed of YOLOv3 with following me
...
@@ -88,7 +88,7 @@ PP-YOLO and PP-YOLOv2 improved performance and speed of YOLOv3 with following me
**Notes:**
**Notes:**
- PP-YOLO-tiny is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
- PP-YOLO-tiny is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
- PP-YOLO-tiny used 8 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md).
- PP-YOLO-tiny used 8 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ/README.md).
- PP-YOLO-tiny inference speed is tested on Kirin 990 with 4 threads by arm8
- PP-YOLO-tiny inference speed is tested on Kirin 990 with 4 threads by arm8
- we alse provide PP-YOLO-tiny post quant inference model, which can compress model to **1.3MB** with nearly no inference on inference speed and performance
- we alse provide PP-YOLO-tiny post quant inference model, which can compress model to **1.3MB** with nearly no inference on inference speed and performance
@@ -104,7 +104,7 @@ PP-YOLO and PP-YOLOv2 improved performance and speed of YOLOv3 with following me
...
@@ -104,7 +104,7 @@ PP-YOLO and PP-YOLOv2 improved performance and speed of YOLOv3 with following me
**Notes:**
**Notes:**
- PP-YOLO-tiny is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
- PP-YOLO-tiny is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
- PP-YOLO-tiny used 8 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob//develop/static/docs/FAQ.md).
- PP-YOLO-tiny used 8 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/static/docs/FAQ.md).
- PP-YOLO-tiny inference speed is tested on Kirin 990 with 4 threads by arm8
- PP-YOLO-tiny inference speed is tested on Kirin 990 with 4 threads by arm8
- we alse provide PP-YOLO-tiny post quant inference model, which can compress model to **1.3MB** with nearly no inference on inference speed and performance
- we alse provide PP-YOLO-tiny post quant inference model, which can compress model to **1.3MB** with nearly no inference on inference speed and performance