提交 f49d9b39 编写于 作者: M minqiyang

Transfer GRU unit

test=develop
上级 7e7b4500
......@@ -22,7 +22,7 @@ from . import layers
from ..framework import Variable, OpProtoHolder
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant
__all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding']
__all__ = ['Conv2D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit']
class Conv2D(layers.Layer):
......@@ -496,3 +496,138 @@ class Embedding(layers.Layer):
})
return out
class GRUUnit(layers.Layer):
"""
**GRU unit layer**
if origin_mode is True, then the equation of a gru step is from paper
`Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
.. math::
u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)
if origin_mode is False, then the equation of a gru step is from paper
`Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_
.. math::
u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
of the equation above, the :math:`z_t` is split into 3 parts -
:math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
implement a full GRU unit operator for an input, a fully
connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.
The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
an intermediate candidate hidden output, which is denoted by :math:`m_t`.
This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
Args:
input (Variable): The fc transformed input value of current step.
hidden (Variable): The hidden value of gru unit from previous step.
size (integer): The input dimension value.
param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weight matrix. Note:
- The shape of the weight matrix is :math:`(T \\times 3D)`, where
:math:`D` is the hidden size.
- All elements in the weight matrix can be divided into two parts.
The first part are weights of the update gate and reset gate with
shape :math:`(D \\times 2D)`, and the second part are weights for
candidate hidden state with shape :math:`(D \\times D)`.
If it is set to None or one attribute of ParamAttr, gru_unit will
create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
the bias in the update gate, reset gate and candidate calculations.
If it is set to False, no bias will be applied to the update gate,
reset gate and candidate calculations. If it is set to None or one
attribute of ParamAttr, gru_unit will create ParamAttr as
bias_attr. If the Initializer of the bias_attr is not set, the bias
is initialized zero. Default: None.
activation (string): The activation type for cell (actNode).
Default: 'tanh'
gate_activation (string): The activation type for gates (actGate).
Default: 'sigmoid'
Returns:
tuple: The hidden value, reset-hidden value and gate values.
"""
def __init__(self,
hidden,
size,
param_attr=None,
bias_attr=None,
activation='tanh',
gate_activation='sigmoid',
origin_mode=False,
dtype='float32'):
super(GRUUnit, self).__init__()
activation_dict = dict(
identity=0,
sigmoid=1,
tanh=2,
relu=3, )
activation = activation_dict[activation]
gate_activation = activation_dict[gate_activation]
helper = LayerHelper('gru_unit', **locals())
dtype = helper.input_dtype()
size = size // 3
# create weight
weight = helper.create_parameter(
attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
gate = helper.create_variable_for_type_inference(dtype)
reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
updated_hidden = helper.create_variable_for_type_inference(dtype)
inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
# create bias
if helper.bias_attr:
bias_size = [1, 3 * size]
bias = helper.create_parameter(
attr=helper.bias_attr,
shape=bias_size,
dtype=dtype,
is_bias=True)
inputs['Bias'] = bias
def forward(self, input):
self._helper.append_op(
type='gru_unit',
inputs=inputs,
outputs={
'Gate': gate,
'ResetHiddenPrev': reset_hidden_pre,
'Hidden': updated_hidden,
},
attrs={
'activation': 2, # tanh
'gate_activation': 1, # sigmoid
})
return updated_hidden, reset_hidden_pre, gate
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册