Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f4729a24
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f4729a24
编写于
11月 08, 2017
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into image
上级
15133229
502d7daf
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
325 addition
and
68 deletion
+325
-68
benchmark/paddle/image/vgg.py
benchmark/paddle/image/vgg.py
+1
-1
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
+76
-7
paddle/gserver/layers/MKLDNNAddtoLayer.h
paddle/gserver/layers/MKLDNNAddtoLayer.h
+21
-1
paddle/gserver/tests/test_MKLDNN.cpp
paddle/gserver/tests/test_MKLDNN.cpp
+2
-7
paddle/operators/accuracy_op.cu
paddle/operators/accuracy_op.cu
+1
-1
paddle/operators/fill_constant_batch_size_like_op.cc
paddle/operators/fill_constant_batch_size_like_op.cc
+2
-2
paddle/operators/lstm_unit_op.cc
paddle/operators/lstm_unit_op.cc
+4
-4
paddle/operators/pool_cudnn_op.cu
paddle/operators/pool_cudnn_op.cu
+4
-4
paddle/operators/pool_op.cc
paddle/operators/pool_op.cc
+16
-15
paddle/operators/pool_op.h
paddle/operators/pool_op.h
+4
-4
paddle/operators/pool_with_index_op.cc
paddle/operators/pool_with_index_op.cc
+9
-9
paddle/operators/pool_with_index_op.h
paddle/operators/pool_with_index_op.h
+2
-2
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+71
-5
python/paddle/v2/framework/tests/test_accuracy_op.py
python/paddle/v2/framework/tests/test_accuracy_op.py
+0
-1
python/paddle/v2/framework/tests/test_pool2d_op.py
python/paddle/v2/framework/tests/test_pool2d_op.py
+2
-2
python/paddle/v2/framework/tests/test_pool3d_op.py
python/paddle/v2/framework/tests/test_pool3d_op.py
+2
-2
python/paddle/v2/framework/tests/test_pool_max_op.py
python/paddle/v2/framework/tests/test_pool_max_op.py
+1
-1
python/paddle/v2/framework/tests/test_understand_sentiment_lstm.py
...ddle/v2/framework/tests/test_understand_sentiment_lstm.py
+107
-0
未找到文件。
benchmark/paddle/image/vgg.py
浏览文件 @
f4729a24
...
...
@@ -13,7 +13,7 @@ define_py_data_sources2(
settings
(
batch_size
=
batch_size
,
learning_rate
=
0.01
/
batch_size
,
learning_rate
=
0.0
0
1
/
batch_size
,
learning_method
=
MomentumOptimizer
(
0.9
),
regularization
=
L2Regularization
(
0.0005
*
batch_size
))
...
...
paddle/gserver/layers/MKLDNNAddtoLayer.cpp
浏览文件 @
f4729a24
...
...
@@ -62,16 +62,14 @@ void MKLDNNAddtoLayer::resetFwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
if
(
biases_
)
{
LOG
(
FATAL
)
<<
"not implemented yet"
;
}
resetFwdBuffers
(
inVals_
,
out
);
resetFwdBuffers
(
inVals_
,
bias
,
out
);
in
=
inVals_
[
0
];
std
::
shared_ptr
<
sum
::
primitive_desc
>
fwdPD
;
resetFwdPD
(
fwdPD
,
inVals_
,
out
);
std
::
shared_ptr
<
sum
::
primitive_desc
>
biasPD
;
resetFwdPD
(
fwdPD
,
biasPD
,
inVals_
,
bias
,
out
);
resetFwdPipeline
(
pipeline
,
fwdPD
,
inVals_
,
out
);
resetFwdPipeline
(
pipeline
,
fwdPD
,
biasPD
,
inVals_
,
bias
,
out
);
}
void
MKLDNNAddtoLayer
::
resetBwd
(
std
::
vector
<
primitive
>&
pipeline
,
...
...
@@ -79,7 +77,7 @@ void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
MKLDNNMatrixPtr
&
wgt
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
resetBwdBuffers
(
inGrads_
,
out
);
resetBwdBuffers
(
inGrads_
,
bias
,
out
);
in
=
inGrads_
[
0
];
// backward only need share output grad to input grad
...
...
@@ -89,6 +87,20 @@ void MKLDNNAddtoLayer::resetBwd(std::vector<primitive>& pipeline,
inputLayers_
[
i
]
->
getOutputGrad
()
->
setData
(
inGrads_
[
i
]
->
getData
());
}
}
// backward bias
bwdBias_
=
nullptr
;
if
(
bias
)
{
std
::
vector
<
double
>
scales
(
bs_
,
1.0
);
std
::
vector
<
memory
::
primitive_desc
>
srcPDs
(
bs_
,
bias
->
getPrimitiveDesc
());
auto
biasPD
=
sum
::
primitive_desc
(
bias
->
getMemoryDesc
(),
scales
,
srcPDs
);
std
::
vector
<
primitive
::
at
>
srcs
;
for
(
size_t
i
=
0
;
i
<
grads_
.
size
();
++
i
)
{
srcs
.
push_back
(
*
(
grads_
[
i
]));
}
bwdBias_
.
reset
(
new
sum
(
biasPD
,
srcs
,
*
bias
));
pipeline
.
push_back
(
*
bwdBias_
);
}
}
void
MKLDNNAddtoLayer
::
updateWeights
(
const
UpdateCallback
&
callback
)
{
...
...
@@ -97,7 +109,25 @@ void MKLDNNAddtoLayer::updateWeights(const UpdateCallback& callback) {
}
}
void
MKLDNNAddtoLayer
::
prepareBias
(
MKLDNNMatrixPtr
&
bias
,
const
MatrixPtr
&
biasMat
,
const
MKLDNNMatrixPtr
&
out
,
std
::
vector
<
MKLDNNMatrixPtr
>&
outs
)
{
auto
pd
=
MKLDNNMatrix
::
createPrimitiveDesc
(
{(
int
)
layerSize_
},
memory
::
format
::
x
,
engine_
);
bias
=
MKLDNNMatrix
::
create
(
pd
,
biasMat
);
outs
.
clear
();
real
*
data
=
out
->
getData
();
CHECK_EQ
(
bs_
*
layerSize_
,
out
->
getElementCnt
());
for
(
int
i
=
0
;
i
<
bs_
;
++
i
)
{
MatrixPtr
tmp
=
Matrix
::
create
(
data
+
i
*
layerSize_
,
1
,
layerSize_
,
false
,
false
);
outs
.
push_back
(
MKLDNNMatrix
::
create
(
bias
->
getPrimitiveDesc
(),
tmp
));
}
}
void
MKLDNNAddtoLayer
::
resetFwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
inputs
.
resize
(
inputLayers_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
...
...
@@ -110,10 +140,18 @@ void MKLDNNAddtoLayer::resetFwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
}
resetOutValue
(
out
,
inputs
[
0
]
->
getPrimitiveDesc
());
if
(
biases_
&&
biases_
->
getW
())
{
prepareBias
(
bias
,
biases_
->
getW
(),
out
,
vals_
);
}
else
{
bias
=
nullptr
;
}
}
void
MKLDNNAddtoLayer
::
resetFwdPD
(
std
::
shared_ptr
<
sum
::
primitive_desc
>&
pd
,
std
::
shared_ptr
<
sum
::
primitive_desc
>&
biasPD
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
bias
,
MKLDNNMatrixPtr
out
)
{
std
::
vector
<
double
>
scales
(
inputs
.
size
(),
1.0
);
std
::
vector
<
memory
::
primitive_desc
>
srcPDs
;
...
...
@@ -123,12 +161,23 @@ void MKLDNNAddtoLayer::resetFwdPD(std::shared_ptr<sum::primitive_desc>& pd,
CHECK
(
out
);
pd
.
reset
(
new
sum
::
primitive_desc
(
out
->
getMemoryDesc
(),
scales
,
srcPDs
));
CHECK_PRIMITIVE_DESC_EQ
(
out
,
pd
->
dst_primitive_desc
());
biasPD
=
nullptr
;
if
(
bias
)
{
std
::
vector
<
double
>
scales
(
2
,
1.0
);
std
::
vector
<
memory
::
primitive_desc
>
srcPDs
(
2
,
bias
->
getPrimitiveDesc
());
biasPD
.
reset
(
new
sum
::
primitive_desc
(
bias
->
getMemoryDesc
(),
scales
,
srcPDs
));
CHECK_PRIMITIVE_DESC_EQ
(
bias
,
biasPD
->
dst_primitive_desc
());
}
}
void
MKLDNNAddtoLayer
::
resetFwdPipeline
(
std
::
vector
<
primitive
>&
pipeline
,
std
::
shared_ptr
<
sum
::
primitive_desc
>&
pd
,
std
::
shared_ptr
<
sum
::
primitive_desc
>&
biasPD
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
std
::
vector
<
primitive
::
at
>
srcs
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
...
...
@@ -136,9 +185,23 @@ void MKLDNNAddtoLayer::resetFwdPipeline(
}
fwd_
.
reset
(
new
sum
(
*
pd
,
srcs
,
*
out
));
pipeline
.
push_back
(
*
fwd_
);
fwdBias_
.
clear
();
if
(
biasPD
==
nullptr
||
bias
==
nullptr
)
{
return
;
}
fwdBias_
.
resize
(
vals_
.
size
());
for
(
size_t
i
=
0
;
i
<
vals_
.
size
();
++
i
)
{
std
::
vector
<
primitive
::
at
>
srcs
;
srcs
.
push_back
(
*
(
vals_
[
i
]));
srcs
.
push_back
(
*
bias
);
fwdBias_
[
i
].
reset
(
new
sum
(
*
biasPD
,
srcs
,
*
vals_
[
i
]));
pipeline
.
push_back
(
*
fwdBias_
[
i
]);
}
}
void
MKLDNNAddtoLayer
::
resetBwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
)
{
CHECK
(
outVal_
);
resetOutGrad
(
out
,
outVal_
->
getPrimitiveDesc
());
...
...
@@ -149,6 +212,12 @@ void MKLDNNAddtoLayer::resetBwdBuffers(std::vector<MKLDNNMatrixPtr>& inputs,
resetInGrad
(
inputs
[
i
],
inVal_
->
getPrimitiveDesc
(),
i
);
CHECK_PRIMITIVE_DESC_EQ
(
inputs
[
i
],
out
->
getPrimitiveDesc
());
}
if
(
biases_
&&
biases_
->
getWGrad
())
{
prepareBias
(
bias
,
biases_
->
getWGrad
(),
out
,
grads_
);
}
else
{
bias
=
nullptr
;
}
}
}
// namespace paddle
paddle/gserver/layers/MKLDNNAddtoLayer.h
浏览文件 @
f4729a24
...
...
@@ -32,9 +32,15 @@ protected:
// layer size == ic * ih * iw == oc * oh *ow, and can not be changed
size_t
layerSize_
;
// TODO(TJ): this part has not been optimized by MKL-DNN
std
::
unique_ptr
<
Weight
>
biases_
;
// buffers for adding bias
std
::
vector
<
MKLDNNMatrixPtr
>
vals_
;
std
::
vector
<
MKLDNNMatrixPtr
>
grads_
;
// primitives for adding bias
std
::
vector
<
std
::
shared_ptr
<
mkldnn
::
primitive
>>
fwdBias_
;
std
::
shared_ptr
<
mkldnn
::
primitive
>
bwdBias_
;
public:
explicit
MKLDNNAddtoLayer
(
const
LayerConfig
&
config
)
:
MKLDNNLayer
(
config
)
{}
...
...
@@ -91,20 +97,34 @@ protected:
* reset pipeline.
*/
void
resetFwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
void
resetFwdPD
(
std
::
shared_ptr
<
mkldnn
::
sum
::
primitive_desc
>&
pd
,
std
::
shared_ptr
<
mkldnn
::
sum
::
primitive_desc
>&
biasPD
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
bias
,
MKLDNNMatrixPtr
out
);
void
resetFwdPipeline
(
std
::
vector
<
mkldnn
::
primitive
>&
pipeline
,
std
::
shared_ptr
<
mkldnn
::
sum
::
primitive_desc
>&
pd
,
std
::
shared_ptr
<
mkldnn
::
sum
::
primitive_desc
>&
biasPD
,
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* Backward functions: reset buffers(inputs, output, bias)
*/
void
resetBwdBuffers
(
std
::
vector
<
MKLDNNMatrixPtr
>&
inputs
,
MKLDNNMatrixPtr
&
bias
,
MKLDNNMatrixPtr
&
out
);
/**
* prepare for bias
*/
void
prepareBias
(
MKLDNNMatrixPtr
&
bias
,
const
MatrixPtr
&
biasMat
,
const
MKLDNNMatrixPtr
&
out
,
std
::
vector
<
MKLDNNMatrixPtr
>&
outs
);
};
}
// namespace paddle
paddle/gserver/tests/test_MKLDNN.cpp
浏览文件 @
f4729a24
...
...
@@ -300,13 +300,8 @@ void testAddtoLayer(const testImageDesc& pm, const size_t nInputs) {
TestConfig
dnnConfig
;
getAddtoConfig
(
dnnConfig
,
pm
,
nInputs
);
dnnConfig
.
layerConfig
.
set_type
(
"mkldnn_addto"
);
// TODO(TJ): test with bias
for
(
auto
withBias
:
{
false
})
{
if
(
withBias
)
{
dnnConfig
.
biasSize
=
pm
.
ic
*
pm
.
ih
*
pm
.
iw
;
}
else
{
dnnConfig
.
biasSize
=
0
;
}
for
(
auto
withBias
:
{
false
,
true
})
{
dnnConfig
.
biasSize
=
withBias
?
pm
.
ic
*
pm
.
ih
*
pm
.
iw
:
0
;
RUN_MKLDNN_TEST_LAYER
(
dnnConfig
,
"addto"
,
pm
)
}
}
...
...
paddle/operators/accuracy_op.cu
浏览文件 @
f4729a24
...
...
@@ -65,7 +65,7 @@ class AccuracyOpCUDAKernel : public framework::OpKernel<T> {
size_t
num_samples
=
inference
->
dims
()[
0
];
size_t
infer_width
=
inference
->
dims
()[
1
];
cudaMemset
((
void
**
)
&
accuracy_data
,
0
,
sizeof
(
float
));
PADDLE_ENFORCE
(
cudaMemset
(
accuracy_data
,
0
,
sizeof
(
float
)
));
if
(
num_samples
==
0
)
{
return
;
...
...
paddle/operators/fill_constant_batch_size_like_op.cc
浏览文件 @
f4729a24
...
...
@@ -75,10 +75,10 @@ class FillConstantBatchSizeLikeOpMaker
"with the specified value"
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"(vector<int>) The shape of the output"
);
AddAttr
<
int
>
(
"input_dim_idx"
,
"(int, default 0)
t
he index of input's batch size dimension"
)
"(int, default 0)
T
he index of input's batch size dimension"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"output_dim_idx"
,
"(int, default 0)
t
he index of output's batch size dimension"
)
"(int, default 0)
T
he index of output's batch size dimension"
)
.
SetDefault
(
0
);
AddAttr
<
float
>
(
"value"
,
"(float, default 0) The value to be filled"
)
.
SetDefault
(
0.0
f
);
...
...
paddle/operators/lstm_unit_op.cc
浏览文件 @
f4729a24
...
...
@@ -34,10 +34,10 @@ class LstmUnitOp : public framework::OperatorWithKernel {
auto
c_prev_dims
=
ctx
->
GetInputDim
(
"C_prev"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
PADDLE_ENFORCE
(
x_dims
[
0
]
==
c_prev_dims
[
0
],
"Batch size of inputs and states must be equal"
);
PADDLE_ENFORCE
(
x_dims
[
1
]
==
c_prev_dims
[
1
]
*
4
,
"Dimension of FC should equal to prev state * 4"
);
PADDLE_ENFORCE
_EQ
(
x_dims
[
0
],
c_prev_dims
[
0
],
"Batch size of inputs and states must be equal"
);
PADDLE_ENFORCE
_EQ
(
x_dims
[
1
],
c_prev_dims
[
1
]
*
4
,
"Dimension of FC should equal to prev state * 4"
);
int
b_size
=
c_prev_dims
[
0
];
// batch size
int
s_dim
=
c_prev_dims
[
1
];
// state dim
...
...
paddle/operators/pool_cudnn_op.cu
浏览文件 @
f4729a24
...
...
@@ -37,11 +37,11 @@ class PoolCudnnOpKernel : public framework::OpKernel<T> {
const
T
*
input_data
=
input
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling
_t
ype"
);
std
::
vector
<
int
>
ksize
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
ctx
.
Attr
<
bool
>
(
"global
P
ooling"
))
{
if
(
ctx
.
Attr
<
bool
>
(
"global
_p
ooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
input
->
dims
()[
i
+
2
]);
...
...
@@ -92,12 +92,12 @@ class PoolCudnnGradOpKernel : public framework::OpKernel<T> {
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling
_t
ype"
);
std
::
vector
<
int
>
ksize
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
ctx
.
Attr
<
bool
>
(
"global
P
ooling"
))
{
if
(
ctx
.
Attr
<
bool
>
(
"global
_p
ooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
input
->
dims
()[
i
+
2
]);
...
...
paddle/operators/pool_op.cc
浏览文件 @
f4729a24
...
...
@@ -29,7 +29,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
auto
in_x_dims
=
ctx
->
GetInputDim
(
"X"
);
std
::
string
pooling_type
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
string
pooling_type
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"pooling
_t
ype"
);
std
::
vector
<
int
>
ksize
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
...
...
@@ -37,7 +37,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
||
in_x_dims
.
size
()
==
5
,
"Pooling intput should be 4-D or 5-D tensor."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"global
P
ooling"
))
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"global
_p
ooling"
))
{
ksize
.
resize
(
static_cast
<
size_t
>
(
in_x_dims
.
size
())
-
2
);
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
...
...
@@ -83,20 +83,20 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
"H is the height of the feature, "
"and W is the width of the feature."
);
AddAttr
<
std
::
string
>
(
"pooling
T
ype"
,
AddAttr
<
std
::
string
>
(
"pooling
_t
ype"
,
"(string), pooling type, can be
\"
max
\"
for max-pooling "
"and
\"
avg
\"
for average-pooling."
)
.
InEnum
({
"max"
,
"avg"
});
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector<int>) The pooling window "
"size(height, width) of the pooling operator. "
"If global
P
ooling = true, ksize and paddings will "
"If global
_p
ooling = true, ksize and paddings will "
"be ignored."
);
// TODO(Chengduo): Add checker.
// (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global
P
ooling"
,
AddAttr
<
bool
>
(
"global
_p
ooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global
P
ooling = true, ksize and paddings will be ignored."
)
"If global
_p
ooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1, 1}), strides(height, "
...
...
@@ -107,7 +107,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
"paddings"
,
"(vector<int>, defalut {0,0}), paddings(height, width) of pooling "
"operator."
"If global
P
ooling = true, paddings and ksize will be ignored."
)
"If global
_p
ooling = true, paddings and ksize will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
...
...
@@ -115,7 +115,7 @@ Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
Pool2d Operator.
The pooling2d operation calculates the output based on
the input, pooling
T
ype and ksize, strides, paddings parameters.
the input, pooling
_t
ype and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Parameters(ksize, strides, paddings) are two elements.
...
...
@@ -152,7 +152,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"the number of channels, and D, H and W is the depth, height and "
"width of the feature, respectively."
);
AddAttr
<
std
::
string
>
(
"pooling
T
ype"
,
AddAttr
<
std
::
string
>
(
"pooling
_t
ype"
,
"(string) Pooling type, can be
\"
max
\"
for max-pooling "
"and
\"
avg
\"
for average-pooling."
)
.
InEnum
({
"max"
,
"avg"
});
...
...
@@ -160,13 +160,14 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"ksize"
,
"(vector<int>) The pooling window size(depth, height, "
"width) of pooling operator. "
"If global
P
ooling = true, ksize and paddings will "
"If global
_p
ooling = true, ksize and paddings will "
"be ignored."
);
// TODO(Chengduo): Add checker.
// (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"globalPooling"
,
"(bool, default false) Whether to use the global pooling. "
"If globalPooling = true, ksize and paddings wille be ignored."
)
AddAttr
<
bool
>
(
"global_pooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings wille be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
...
...
@@ -178,7 +179,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
"paddings"
,
"(vector<int>, defalut {0,0,0}), paddings(depth, height, "
"width) of pooling operator. "
"If global
P
ooling = true, ksize and paddings will be ignored."
)
"If global
_p
ooling = true, ksize and paddings will be ignored."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
...
...
@@ -186,7 +187,7 @@ Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
Pool3d Operator.
The pooling3d operation calculates the output based on
the input, pooling
T
ype, ksize, strides, and paddings parameters.
the input, pooling
_t
ype, ksize, strides, and paddings parameters.
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings)
...
...
paddle/operators/pool_op.h
浏览文件 @
f4729a24
...
...
@@ -57,11 +57,11 @@ class PoolKernel : public framework::OpKernel<T> {
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
Tensor
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling
_t
ype"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
context
.
Attr
<
bool
>
(
"global
P
ooling"
))
{
if
(
context
.
Attr
<
bool
>
(
"global
_p
ooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
in_x
->
dims
()[
i
+
2
]);
...
...
@@ -119,12 +119,12 @@ class PoolGradKernel : public framework::OpKernel<T> {
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
in_x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling
T
ype"
);
std
::
string
pooling_type
=
context
.
Attr
<
std
::
string
>
(
"pooling
_t
ype"
);
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
context
.
Attr
<
bool
>
(
"global
P
ooling"
))
{
if
(
context
.
Attr
<
bool
>
(
"global
_p
ooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
in_x
->
dims
()[
i
+
2
]);
...
...
paddle/operators/pool_with_index_op.cc
浏览文件 @
f4729a24
...
...
@@ -44,7 +44,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
in_x_dims
.
size
()
==
4
||
in_x_dims
.
size
()
==
5
,
"Pooling intput should be 4-D or 5-D tensor."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"global
P
ooling"
))
{
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"global
_p
ooling"
))
{
ksize
.
resize
(
static_cast
<
size_t
>
(
in_x_dims
.
size
())
-
2
);
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
...
...
@@ -110,14 +110,14 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector<int>) The pooling window size(height, "
"width) of pooling operator. "
"If global
P
ooling = true, ksize and paddings "
"If global
_p
ooling = true, ksize and paddings "
"will be ignored."
);
// TODO(Chengduo): Add
// checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global
P
ooling"
,
"global
_p
ooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global
P
ooling = true, ksize and paddings will be ignored."
)
"If global
_p
ooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1, 1}), strides(height, "
...
...
@@ -128,7 +128,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"paddings"
,
"(vector<int>, defalut {0, 0}), paddings(height, width) of pooling "
"operator. "
"If global
P
ooling = true, paddings and will be ignored."
)
"If global
_p
ooling = true, paddings and will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
...
...
@@ -188,14 +188,14 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
std
::
vector
<
int
>>
(
"ksize"
,
"(vector<int>) The pooling window size(depth, "
"height, width) of pooling operator. "
"If global
P
ooling = true, ksize and paddings "
"If global
_p
ooling = true, ksize and paddings "
"will be ignored."
);
// TODO(Chengduo): Add
// checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global
P
ooling"
,
"global
_p
ooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global
P
ooling = true, ksize and paddings will be ignored."
)
"If global
_p
ooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1,1,1}), strides(depth, "
...
...
@@ -206,7 +206,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"paddings"
,
"(vector, defalut {0,0,0}), paddings(depth, "
"height, width) of pooling operator. "
"If global
P
ooling = true, paddings and ksize will be ignored."
)
"If global
_p
ooling = true, paddings and ksize will be ignored."
)
.
SetDefault
({
0
,
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
...
...
paddle/operators/pool_with_index_op.h
浏览文件 @
f4729a24
...
...
@@ -35,7 +35,7 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
context
.
Attr
<
bool
>
(
"global
P
ooling"
))
{
if
(
context
.
Attr
<
bool
>
(
"global
_p
ooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
in_x
->
dims
()[
i
+
2
]);
...
...
@@ -72,7 +72,7 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> {
std
::
vector
<
int
>
ksize
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
if
(
context
.
Attr
<
bool
>
(
"global
P
ooling"
))
{
if
(
context
.
Attr
<
bool
>
(
"global
_p
ooling"
))
{
for
(
size_t
i
=
0
;
i
<
ksize
.
size
();
++
i
)
{
paddings
[
i
]
=
0
;
ksize
[
i
]
=
static_cast
<
int
>
(
in_x_grad
->
dims
()[
i
+
2
]);
...
...
python/paddle/v2/framework/layers.py
浏览文件 @
f4729a24
...
...
@@ -134,9 +134,7 @@ def _create_op_func_(op_type):
o_name
=
not_intermediate_outputs
[
0
].
name
intermediate_output_names
=
[
output
.
name
for
output
in
intermediate_outputs
]
def
func
(
**
kwargs
):
helper
=
LayerHelper
(
op_type
,
**
kwargs
)
inputs
=
dict
()
def
infer_and_check_data_type
(
op_proto
,
**
kwargs
):
dtype
=
None
for
ipt
in
op_proto
.
inputs
:
name
=
_convert_
(
ipt
.
name
)
...
...
@@ -153,6 +151,20 @@ def _create_op_func_(op_type):
elif
dtype
!=
each
.
data_type
:
raise
ValueError
(
"operator {0} must input same dtype"
.
format
(
op_type
))
return
dtype
def
func
(
**
kwargs
):
helper
=
LayerHelper
(
op_type
,
**
kwargs
)
dtype
=
infer_and_check_data_type
(
op_proto
,
**
kwargs
)
inputs
=
dict
()
for
ipt
in
op_proto
.
inputs
:
name
=
_convert_
(
ipt
.
name
)
val
=
kwargs
.
pop
(
name
,
[])
if
not
isinstance
(
val
,
list
)
and
not
isinstance
(
val
,
tuple
):
val
=
[
val
]
inputs
[
ipt
.
name
]
=
val
outputs
=
dict
()
...
...
@@ -178,6 +190,20 @@ _create_op_func_('reshape')
_create_op_func_
(
'elementwise_add'
)
_create_op_func_
(
'sigmoid'
)
_create_op_func_
(
'scale'
)
_create_op_func_
(
'reshape'
)
_create_op_func_
(
'transpose'
)
def
fill_constant
(
data_type
,
shape
,
value
=
None
,
program
=
None
):
helper
=
LayerHelper
(
'fill_constant'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
data_type
)
helper
.
append_op
(
type
=
'fill_constant'
,
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'data_type'
:
data_type
,
'shape'
:
shape
,
'value'
:
value
})
return
out
def
cast
(
x
,
data_type
,
main_program
=
None
):
...
...
@@ -414,9 +440,9 @@ def pool2d(input,
inputs
=
{
"X"
:
input
},
outputs
=
{
"Out"
:
pool_out
},
attrs
=
{
"pooling
T
ype"
:
pool_type
,
"pooling
_t
ype"
:
pool_type
,
"ksize"
:
pool_size
,
"global
P
ooling"
:
global_pooling
,
"global
_p
ooling"
:
global_pooling
,
"strides"
:
pool_stride
,
"paddings"
:
pool_padding
})
...
...
@@ -762,6 +788,46 @@ class StaticRNN(object):
})
def
lstm
(
x
,
c_pre_init
,
hidden_dim
,
forget_bias
=
None
,
main_program
=
None
,
startup_program
=
None
):
helper
=
LayerHelper
(
'lstm_unit'
,
**
locals
())
rnn
=
StaticRNN
()
with
rnn
.
step
():
c_pre
=
rnn
.
memory
(
init
=
c_pre_init
)
x_t
=
rnn
.
step_input
(
x
)
before_fc
=
concat
(
input
=
[
x_t
,
c_pre
],
axis
=
1
,
main_program
=
main_program
,
startup_program
=
startup_program
)
after_fc
=
fc
(
input
=
before_fc
,
size
=
hidden_dim
*
4
,
main_program
=
main_program
,
startup_program
=
startup_program
)
data_type
=
x
.
data_type
c
=
helper
.
create_tmp_variable
(
data_type
)
h
=
helper
.
create_tmp_variable
(
data_type
)
helper
.
append_op
(
type
=
'lstm_unit'
,
inputs
=
{
"X"
:
after_fc
,
"C_prev"
:
c_pre
},
outputs
=
{
"C"
:
c
,
"H"
:
h
},
attrs
=
{
"forget_bias"
:
forget_bias
})
rnn
.
update_memory
(
c_pre
,
c
)
rnn
.
output
(
h
)
return
rnn
()
def
lod_rank_table
(
x
,
level
=
0
,
main_program
=
None
):
helper
=
LayerHelper
(
"lod_rank_table"
,
**
locals
())
table
=
helper
.
create_variable
(
...
...
python/paddle/v2/framework/tests/test_accuracy_op.py
浏览文件 @
f4729a24
...
...
@@ -26,5 +26,4 @@ class TestAccuracyOp(OpTest):
if
__name__
==
'__main__'
:
exit
(
0
)
unittest
.
main
()
python/paddle/v2/framework/tests/test_pool2d_op.py
浏览文件 @
f4729a24
...
...
@@ -61,8 +61,8 @@ class TestPool2d_Op(OpTest):
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'pooling
T
ype'
:
self
.
pool_type
,
'global
P
ooling'
:
self
.
global_pool
,
'pooling
_t
ype'
:
self
.
pool_type
,
'global
_p
ooling'
:
self
.
global_pool
,
}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
...
...
python/paddle/v2/framework/tests/test_pool3d_op.py
浏览文件 @
f4729a24
...
...
@@ -67,8 +67,8 @@ class TestPool3d_Op(OpTest):
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'pooling
T
ype'
:
self
.
pool_type
,
'global
P
ooling'
:
self
.
global_pool
,
'pooling
_t
ype'
:
self
.
pool_type
,
'global
_p
ooling'
:
self
.
global_pool
,
}
self
.
outputs
=
{
'Out'
:
output
.
astype
(
'float32'
)}
...
...
python/paddle/v2/framework/tests/test_pool_max_op.py
浏览文件 @
f4729a24
...
...
@@ -86,7 +86,7 @@ class TestMaxPoolWithIndex_Op(OpTest):
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'global
P
ooling'
:
self
.
global_pool
,
'global
_p
ooling'
:
self
.
global_pool
,
}
self
.
inputs
=
{
'X'
:
input
}
...
...
python/paddle/v2/framework/tests/test_understand_sentiment_lstm.py
0 → 100644
浏览文件 @
f4729a24
import
paddle.v2
as
paddle
import
paddle.v2.framework.layers
as
layers
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.optimizer
as
optimizer
from
paddle.v2.framework.framework
import
g_main_program
,
g_startup_program
from
paddle.v2.framework.executor
import
Executor
import
numpy
as
np
def
lstm_net
(
dict_dim
,
class_dim
=
2
,
emb_dim
=
32
,
seq_len
=
80
,
batch_size
=
50
):
data
=
layers
.
data
(
name
=
"words"
,
shape
=
[
seq_len
*
batch_size
,
1
],
append_batch_size
=
False
,
data_type
=
"int64"
)
label
=
layers
.
data
(
name
=
"label"
,
shape
=
[
batch_size
,
1
],
append_batch_size
=
False
,
data_type
=
"int64"
)
emb
=
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
emb
=
layers
.
reshape
(
x
=
emb
,
shape
=
[
batch_size
,
seq_len
,
emb_dim
])
emb
=
layers
.
transpose
(
x
=
emb
,
axis
=
[
1
,
0
,
2
])
c_pre_init
=
layers
.
fill_constant
(
dtype
=
emb
.
data_type
,
shape
=
[
batch_size
,
emb_dim
],
value
=
0.0
)
layer_1_out
=
layers
.
lstm
(
emb
,
c_pre_init
=
c_pre_init
,
hidden_dim
=
emb_dim
)
layer_1_out
=
layers
.
transpose
(
x
=
layer_1_out
,
axis
=
[
1
,
0
,
2
])
prediction
=
layers
.
fc
(
input
=
layer_1_out
,
size
=
class_dim
,
act
=
"softmax"
)
cost
=
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
layers
.
mean
(
x
=
cost
)
adam_optimizer
=
optimizer
.
AdamOptimizer
(
learning_rate
=
0.002
)
opts
=
adam_optimizer
.
minimize
(
avg_cost
)
acc
=
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
return
avg_cost
,
acc
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
lod
=
[
cur_len
]
for
l
in
seq_lens
:
cur_len
+=
l
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
res
=
core
.
LoDTensor
()
res
.
set
(
flattened_data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
chop_data
(
data
,
chop_len
=
80
,
batch_len
=
50
):
data
=
[(
x
[
0
][:
chop_len
],
x
[
1
])
for
x
in
data
if
len
(
x
[
0
])
>=
chop_len
]
return
data
[:
batch_len
]
def
prepare_feed_data
(
data
,
place
):
tensor_words
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
label
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
label
=
label
.
reshape
([
50
,
1
])
tensor_label
=
core
.
LoDTensor
()
tensor_label
.
set
(
label
,
place
)
return
tensor_words
,
tensor_label
def
main
():
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
cost
,
acc
=
lstm_net
(
dict_dim
=
len
(
word_dict
),
class_dim
=
2
)
batch_size
=
100
train_data
=
paddle
.
batch
(
paddle
.
reader
.
buffered
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
size
=
batch_size
*
10
),
batch_size
=
batch_size
)
data
=
chop_data
(
next
(
train_data
()))
place
=
core
.
CPUPlace
()
tensor_words
,
tensor_label
=
prepare_feed_data
(
data
,
place
)
exe
=
Executor
(
place
)
exe
.
run
(
g_startup_program
)
while
True
:
outs
=
exe
.
run
(
g_main_program
,
feed
=
{
"words"
:
tensor_words
,
"label"
:
tensor_label
},
fetch_list
=
[
cost
,
acc
])
cost_val
=
np
.
array
(
outs
[
0
])
acc_val
=
np
.
array
(
outs
[
1
])
print
(
"cost="
+
str
(
cost_val
)
+
" acc="
+
str
(
acc_val
))
if
acc_val
>
0.9
:
break
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录