提交 f456cd80 编写于 作者: Y yangyaming

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix-10219

...@@ -56,11 +56,11 @@ DataFeeder ...@@ -56,11 +56,11 @@ DataFeeder
Reader Reader
====== ======
.. automodule:: paddle.v2.reader .. automodule:: paddle.reader
:members: :members:
:noindex: :noindex:
.. automodule:: paddle.v2.reader.creator .. automodule:: paddle.reader.creator
:members: :members:
:noindex: :noindex:
......
...@@ -479,6 +479,13 @@ label_smooth ...@@ -479,6 +479,13 @@ label_smooth
.. autofunction:: paddle.fluid.layers.label_smooth .. autofunction:: paddle.fluid.layers.label_smooth
:noindex: :noindex:
roi_pool
---------
.. autofunction:: paddle.fluid.layers.roi_pool
:noindex:
ops ops
=== ===
...@@ -820,3 +827,5 @@ topk ...@@ -820,3 +827,5 @@ topk
.. autofunction:: paddle.fluid.layers.topk .. autofunction:: paddle.fluid.layers.topk
:noindex: :noindex:
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
## Why float16 ## Why float16
Half precision (float16) is a binary floating-point format that occupies 16 bits in memory. float16 is half the size of traditional 32-bit single precision format (float) and has lower precision and smaller range. Half precision (float16) is a binary floating-point format that occupies 16 bits in memory. float16 is half the size of traditional 32-bit single precision format (float) and has lower precision and smaller range.
When high precision computation is not required, using float16 data type could potentially When high precision computation is not required (which is usually the case at least in the deep learning inference stage), using float16 data type could potentially
- reduce storage space, memory bandwidth, and power usages; - reduce storage space, memory bandwidth, and power usages;
- increase the chance of data fitting into a smaller cache of lower latency; - increase the chance of data fitting into a smaller cache of lower latency;
...@@ -12,7 +12,7 @@ When high precision computation is not required, using float16 data type could p ...@@ -12,7 +12,7 @@ When high precision computation is not required, using float16 data type could p
## Survey of current float16 support ## Survey of current float16 support
A brief survey of float16 support on different compilers, hardwares, and libraries can be found below. Interested readers can refer to [link1](https://github.com/PaddlePaddle/Paddle/issues/4853) and [link2](https://github.com/Xreki/Xreki.github.io/blob/master/multi_data_types_in_dl_framework/ppt/float16_and_quantized_type.md) for more info. A brief survey of float16 support on different compilers, hardwares, and libraries can be found below. Interested readers can refer to [link1](https://github.com/PaddlePaddle/Paddle/issues/4853) and [link2](https://github.com/Xreki/Xreki.github.io/blob/master/multi_data_types_in_dl_framework/ppt/float16_and_quantized_type.md) for more info.
The goal of float16 is to serve as a key for the executor to find and run the correct version of compute method specialized for float16 in operator kernel. It should be compatible with various natively supported float16 implementations including `__half` for cuda, `float16_t` for ARM, and `Eigen::half` for Eigen to make writing customized float16 kernels easier. The goal of float16 is to serve as a key for the executor to find and run the correct version of compute method specialized for float16 in operator kernels. It should be compatible with various natively supported float16 implementations including `__half` for cuda, `float16_t` for ARM, and `Eigen::half` for Eigen to make writing customized float16 kernels easier.
### Compiler ### Compiler
- nvcc supports `__half` data type after CUDA 7.5. - nvcc supports `__half` data type after CUDA 7.5.
...@@ -95,11 +95,89 @@ float half_to_float(float16 h); ...@@ -95,11 +95,89 @@ float half_to_float(float16 h);
``` ```
which provides one-to-one conversion between float32 and float16. These twos functions will do different conversion routines based on the current hardware. CUDA/ARM instrinsics will be used when the corresonding hardware is available. If the hardware or compiler level does not support float32 to float16 conversion, software emulation will be performed to do the conversion. which provides one-to-one conversion between float32 and float16. These twos functions will do different conversion routines based on the current hardware. CUDA/ARM instrinsics will be used when the corresonding hardware is available. If the hardware or compiler level does not support float32 to float16 conversion, software emulation will be performed to do the conversion.
## To do ## float16 inference
After float16 class is available, some of the future items are below: In Fluid, a neural network is represented as a protobuf message called [ProgramDesc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/concepts/program.md), whose Python wrapper is a [Program](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#program). The basic structure of a program is some nested [blocks](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#block), where each block consists of some [variable](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#variable) definitions and a sequence of [operators](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#operator). An [executor](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/concepts/executor.md) will run a given program desc by executing the sequence of operators in the entrance block of the program one by one.
- Update pybind/tensor_py.h to bind c++ float16 with numpy float16. ### Operator level requirement
Each operator has many kernels for different data types, devices, and library types. The operator will select the appropriate kernel to run based on, among other things, the data type of the input variables. By default, every Fluid operator has a float data type kernel that takes float variables as input and generates float output.
- Modify `GetKernelType()` method in `framework/operator.h` to make it compatible with float16. This means that if we provide float input to the first operator in a program, then each opeartor will use float kernel to compute float output and send it as input to the next operator to trigger the float kernel. Overall, the program will run in float mode and give us a final output of float data type.
- Create a type-casting operator that can convert the data type in tensor between float16 and other types. The same principle applies if we want a program to run in float16 mode. We provide input variable of float16 data type to the first operator, and then one by one, each operator in the program will run the float16 kernel (provided that each operator in this program has float16 kernels registered) until we finally obtain a float16 output variable.
So the preliminary requirement for float16 inference is to add float16 kernel to operators that are needed in a specific kind of program. For example, float16 inference on an image classification neural network like Vgg or Resnet, typically requires the following operators to have float16 kernels: convolution, pooling, multiplication, addition, batch norm, dropout, relu, and softmax. Please refer to [new_op_en](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/dev/new_op_en.md) for details of how to add new kernels to an operator.
### Variable level requirement
Operators including convolution and multiplication (used in fully-connected layers) takes as input not only the variables generated by the preceding operators but also [parameter](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/modules/python_api.md#parameter) variables, which contains the trained weights to apply to the input data. These weights are obtained in the Fluid training process and are by default of float data type.
When these operators are running in float16 mode, the float16 kernel requires those parameter variables to contain weights of Fluid float16 data type. Thus, we need a convenient way to convert the original float weights to float16 weights.
In Fluid, we use tensor to hold actual data for a variable on the c++ end. [Pybind](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/pybind/tensor_py.h) is used to bind c++ tensors of certain data type with numpy array of the correponding numpy data type on the Python end. Each common c++ built-in data type has a corresponding numpy data type of the same name. However, since there is no built-in float16 type in c++, we cannot directly bind numpy float16 data type with the Fluid float16 class. Since both Fluid float16 and numpy float16 use uint16 as the internal data storage type, we use c++ built-in type `uint16_t` and the corresponding numpy uint16 data type to bridge the gap via [Pybind](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/pybind/tensor_py.h).
The following code demonstrates how to do the tensor conversion.
```Python
# var is the variable of float weights
# tensor is a numpy array of data copied from the tensor data in var
# fp16_var is the variable that will contain float16 weights converted from var
tensor = numpy.array(var.get_tensor())
fp16_tensor = fp16_var.get_tensor()
# After the original tensor data is converted to numpy float16 data type,
# view(numpy.uint16) is used so that the internal memory of the numpy array
# will be reinterpreted to be of uint16 data type, which is binded to
# Fluid float16 class via pybind with the help of uint16_t built-in c++ type
fp16_tensor.set(tensor.astype(numpy.float16).view(numpy.uint16), GPUPlace)
```
### Consistent API requirement
The basic inference in float16 mode requires users to feed input and obtain output both of float16 data type. However, in this way, the inference APIs are not consistent between float16 mode and float mode, and users may find it confusing and diffcult to use float16 inference since they need to do extra steps to provide float16 input data and convert float16 output data back to float. To have consistent API for different inference modes, we need to transpile the program desc in some way so that we can run float16 inference by feeding and fetching variables of float data type.
This problem can be solved by introducing a type-casting operator which takes an input variable of certain data type, cast it to another specified data type, and put the casted data into the output variable. Insert cast operator where needed can make a program internally run in float16 mode.
### float16 transpiler
Put all the above requirements in mind, we designed a float16 inference transpiler that can tranpile a float32 mode inference program desc to a float16 mode one.
Given a float inference program and the corresponding variables of float32 weights in the [scope](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/fluid/design/concepts/scope.md),
this transpiler mainly does the following modifications:
1. Insert cast operators at the beginning of the program so that the input float data will be converted to float16 data type before feeding to subsequent operators to invoke the float16 kernel.
2. Insert cast operators at the end of the program so that the output float16 data will be converted back to float data type before users obtain the result.
3. For each parameter variable of float weights, create in the scope a corresponding variable of float16 weights which are converted from the corresponding float weights and add this new float16 variable to the program.
4. Update the operator information in the program so that each relevant operator use the newly created float16 variable instead of its float counterpart.
Below is an example of usage:
```Python
# Get the float inference program
[float_inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# Prepare the float input data
tensor_img = numpy.random.rand(1, 3, 32, 32).astype(numpy.float32)
# Running inference_program in float mode
float_results = exe.run(float_inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
# Use float16 transpiler to speedup
float16_inference_program = float_inference_program.clone()
t = fluid.InferenceTranspiler()
t.float16_transpile(float16_inference_program, GPUPlace)
# Running
float16_results = exe.run(float16_inference_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
```
As we can see from the example above, users can simply use the `float16_transpile` method provided by the infernece transpiler class on an existing float inference program to run inference in float16 mode.
### Speedup on GPU
Currently, Fluid inference in float16 mode is only supported on Nvidia GPU device. There is no motivation to support float16 inference on non-ARM CPUs because float16 is not natively supported there and float16 calculation will only be slower than its float counterpart.
Nvidia started to support its native float16 data type (which has the same internal memory representation as Fluid float16 class) on CUDA 7.5. Moreover, float16 speedups on common computational intensive tasks including GEMM (general matrix-matrix multiplication) and convolution are supported since cublas 7.5 and cuDNN 5.0.
Recently, the introduction of [tensor core](https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/) in volta architecture GPUs and the support of tensor core calculation in CUDA 9.0 and cuDNN 7.0 make float16 truly superior to float in certain deep learning applications. Please refer to this [benchmark report](https://github.com/kexinzhao/Paddle_benchmark/blob/master/float16_benchmark.md) for more details.
...@@ -56,11 +56,11 @@ DataFeeder ...@@ -56,11 +56,11 @@ DataFeeder
Reader Reader
====== ======
.. automodule:: paddle.v2.reader .. automodule:: paddle.reader
:members: :members:
:noindex: :noindex:
.. automodule:: paddle.v2.reader.creator .. automodule:: paddle.reader.creator
:members: :members:
:noindex: :noindex:
......
...@@ -139,7 +139,7 @@ struct TestBroadcastOpHandle { ...@@ -139,7 +139,7 @@ struct TestBroadcastOpHandle {
PADDLE_ENFORCE_EQ(out_tensor.lod(), lod, "lod is not equal."); PADDLE_ENFORCE_EQ(out_tensor.lod(), lod, "lod is not equal.");
f::Tensor result_tensor; f::Tensor result_tensor;
f::TensorCopy(out_tensor, cpu_place, *(ctxs_[j]), &result_tensor); f::TensorCopySync(out_tensor, cpu_place, &result_tensor);
float* ct = result_tensor.mutable_data<float>(cpu_place); float* ct = result_tensor.mutable_data<float>(cpu_place);
for (int64_t i = 0; i < f::product(kDims); ++i) { for (int64_t i = 0; i < f::product(kDims); ++i) {
...@@ -185,7 +185,7 @@ struct TestBroadcastOpHandle { ...@@ -185,7 +185,7 @@ struct TestBroadcastOpHandle {
} }
f::Tensor result_tensor; f::Tensor result_tensor;
f::TensorCopy(rt, cpu_place, *(ctxs_[j]), &result_tensor); f::TensorCopySync(rt, cpu_place, &result_tensor);
float* ct = result_tensor.data<float>(); float* ct = result_tensor.data<float>();
for (int64_t i = 0; i < f::product(kDims); ++i) { for (int64_t i = 0; i < f::product(kDims); ++i) {
......
...@@ -66,8 +66,7 @@ void FetchOpHandle::RunImpl() { ...@@ -66,8 +66,7 @@ void FetchOpHandle::RunImpl() {
auto &t = var->Get<framework::LoDTensor>(); auto &t = var->Get<framework::LoDTensor>();
if (platform::is_gpu_place(t.place())) { if (platform::is_gpu_place(t.place())) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
TensorCopy(t, cpu, *dev_ctxes_[t.place()], &tensors_[i], true); TensorCopySync(t, cpu, &tensors_[i]);
dev_ctxes_.at(t.place())->Wait();
#endif #endif
} else { } else {
tensors_[i].ShareDataWith(t); tensors_[i].ShareDataWith(t);
......
...@@ -58,23 +58,20 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder( ...@@ -58,23 +58,20 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result, void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
const OpDesc &op, const OpDesc &op,
const platform::Place &p, size_t place_id) const {
const size_t &i) const { auto p = places_[place_id];
auto *op_handle = result->ops_.back().get(); auto *op_handle = result->ops_.back().get();
op_handle->SetDeviceContext(p, op_handle->SetDeviceContext(p,
platform::DeviceContextPool::Instance().Get(p)); platform::DeviceContextPool::Instance().Get(p));
auto var_names = op.InputArgumentNames(); for (auto &each_var_name : op.InputArgumentNames()) {
VarHandle *var =
for (auto &each_var_name : var_names) { CreateOrGetLatestVarHandle(result, each_var_name, p, place_id);
VarHandle *var = CreateOrGetLatestVarHandle(result, each_var_name, p, i);
op_handle->AddInput(var); op_handle->AddInput(var);
} }
var_names = op.OutputArgumentNames(); for (auto &each_var_name : op.OutputArgumentNames()) {
CreateOpOutput(result, op_handle, each_var_name, p, place_id);
for (auto &each_var_name : var_names) {
CreateOpOutput(result, op_handle, each_var_name, p, i);
} }
} }
...@@ -84,17 +81,18 @@ bool MultiDevSSAGraphBuilder::IsDistTrainOp(const OpDesc &op, ...@@ -84,17 +81,18 @@ bool MultiDevSSAGraphBuilder::IsDistTrainOp(const OpDesc &op,
return false; return false;
} }
auto checker = [&](const std::vector<std::string> opvars, /**
const std::vector<std::string> sendvars) -> bool { * Check any of opvars contains `.block` and in sendvars
bool is_dist_train_op = false; */
auto checker = [](const std::vector<std::string> &opvars,
const std::vector<std::string> &sendvars) -> bool {
for (auto &var : opvars) { for (auto &var : opvars) {
if (var.find(".block") != std::string::npos && if (var.find(".block") != std::string::npos &&
std::find(sendvars.begin(), sendvars.end(), var) != sendvars.end()) { std::find(sendvars.begin(), sendvars.end(), var) != sendvars.end()) {
is_dist_train_op = true; return true;
break;
} }
} }
return is_dist_train_op; return false;
}; };
if (op.Type() == "split") { if (op.Type() == "split") {
...@@ -117,13 +115,7 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -117,13 +115,7 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
places_.size()); places_.size());
// Find "send" op first for split is in front of send. // Find "send" op first for split is in front of send.
OpDesc *send_op = nullptr; OpDesc *send_op = GetSendOpDesc(program);
for (auto *op : program.Block(0).AllOps()) {
if (op->Type() == "send") {
send_op = op;
break;
}
}
bool is_forwarding = true; bool is_forwarding = true;
for (auto *op : program.Block(0).AllOps()) { for (auto *op : program.Block(0).AllOps()) {
...@@ -134,6 +126,7 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -134,6 +126,7 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
} else if (IsDistTrainOp(*op, send_op)) { } else if (IsDistTrainOp(*op, send_op)) {
CreateComputationalOps(&result, *op, 1); CreateComputationalOps(&result, *op, 1);
} else if (IsScaleLossOp(*op)) { } else if (IsScaleLossOp(*op)) {
// user can customize loss@grad if skip_scale_loss_
if (!skip_scale_loss_) { if (!skip_scale_loss_) {
CreateScaleLossGradOp(&result); CreateScaleLossGradOp(&result);
} }
...@@ -142,10 +135,7 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -142,10 +135,7 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
CreateComputationalOps(&result, *op, places_.size()); CreateComputationalOps(&result, *op, places_.size());
if (!is_forwarding) { if (!is_forwarding) {
// Currently, we assume that once gradient is generated, it can be // Currently, we assume that once gradient is generated, it can be
// broadcast, and each gradient is only broadcast once. But there are no // broadcast, and each gradient is only broadcast once.
// other cases, for example, we need to adjust the gradient according to
// the input when we get the gradient, which is not considered at
// present.
for (auto &og : op->OutputArgumentNames()) { for (auto &og : op->OutputArgumentNames()) {
if (IsParameterGradientOnce(og, &og_has_been_broadcast)) { if (IsParameterGradientOnce(og, &og_has_been_broadcast)) {
InsertNCCLAllReduceOp(&result, og); InsertNCCLAllReduceOp(&result, og);
...@@ -175,6 +165,16 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -175,6 +165,16 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
return std::unique_ptr<SSAGraph>(graph); return std::unique_ptr<SSAGraph>(graph);
} }
OpDesc *MultiDevSSAGraphBuilder::GetSendOpDesc(
const ProgramDesc &program) const {
for (auto *op : program.Block(0).AllOps()) {
if (op->Type() == "send") {
return op;
}
}
return nullptr;
}
void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp( void MultiDevSSAGraphBuilder::InsertNCCLAllReduceOp(
SSAGraph *result, const std::string &og) const { SSAGraph *result, const std::string &og) const {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
...@@ -243,7 +243,7 @@ void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result, ...@@ -243,7 +243,7 @@ void MultiDevSSAGraphBuilder::CreateComputationalOps(SSAGraph *result,
auto p = places_[scope_idx]; auto p = places_[scope_idx];
auto s = local_scopes_[scope_idx]; auto s = local_scopes_[scope_idx];
result->ops_.emplace_back(new ComputationOpHandle(op, s, p)); result->ops_.emplace_back(new ComputationOpHandle(op, s, p));
CreateOpHandleIOs(result, op, p, scope_idx); CreateOpHandleIOs(result, op, scope_idx);
} }
} }
...@@ -255,7 +255,7 @@ void MultiDevSSAGraphBuilder::CreateSendOp(SSAGraph *result, ...@@ -255,7 +255,7 @@ void MultiDevSSAGraphBuilder::CreateSendOp(SSAGraph *result,
result->ops_.emplace_back(new SendOpHandle(op, s, p)); result->ops_.emplace_back(new SendOpHandle(op, s, p));
// Create inputs for output on original place and no ssa output // Create inputs for output on original place and no ssa output
// is created for send op. // is created for send op.
CreateOpHandleIOs(result, op, p, 0); CreateOpHandleIOs(result, op, 0);
} }
bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const { bool MultiDevSSAGraphBuilder::IsScaleLossOp(const OpDesc &op) const {
......
...@@ -48,7 +48,7 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder { ...@@ -48,7 +48,7 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
private: private:
void CreateOpHandleIOs(SSAGraph *result, const OpDesc &op, void CreateOpHandleIOs(SSAGraph *result, const OpDesc &op,
const platform::Place &p, const size_t &i) const; size_t place_id) const;
private: private:
std::string loss_var_name_; std::string loss_var_name_;
...@@ -65,6 +65,9 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder { ...@@ -65,6 +65,9 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
void CreateSendOp(SSAGraph *result, const OpDesc &op) const; void CreateSendOp(SSAGraph *result, const OpDesc &op) const;
/**
* Is this operator as the end-point operator before/after send operator.
*/
bool IsDistTrainOp(const OpDesc &op, OpDesc *send_op) const; bool IsDistTrainOp(const OpDesc &op, OpDesc *send_op) const;
void CreateComputationalOps(SSAGraph *result, const OpDesc &op, void CreateComputationalOps(SSAGraph *result, const OpDesc &op,
...@@ -77,6 +80,12 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder { ...@@ -77,6 +80,12 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
std::unordered_set<std::string> *og_has_been_broadcast) const; std::unordered_set<std::string> *og_has_been_broadcast) const;
void InsertNCCLAllReduceOp(SSAGraph *result, const std::string &og) const; void InsertNCCLAllReduceOp(SSAGraph *result, const std::string &og) const;
/**
* Get send op in the global block of program.
* nullptr if not found.
*/
OpDesc *GetSendOpDesc(const ProgramDesc &program) const;
}; };
} // namespace details } // namespace details
} // namespace framework } // namespace framework
......
...@@ -194,7 +194,7 @@ struct TestReduceOpHandle { ...@@ -194,7 +194,7 @@ struct TestReduceOpHandle {
} }
f::Tensor result_tensor; f::Tensor result_tensor;
f::TensorCopy(rt, cpu_place, *(ctxs_[output_scope_idx]), &result_tensor); f::TensorCopySync(rt, cpu_place, &result_tensor);
float *ct = result_tensor.data<float>(); float *ct = result_tensor.data<float>();
for (int64_t j = 0; j < f::product(result_tensor.dims()); ++j) { for (int64_t j = 0; j < f::product(result_tensor.dims()); ++j) {
...@@ -239,7 +239,7 @@ struct TestReduceOpHandle { ...@@ -239,7 +239,7 @@ struct TestReduceOpHandle {
auto &rt = out_var->Get<f::LoDTensor>(); auto &rt = out_var->Get<f::LoDTensor>();
f::Tensor result_tensor; f::Tensor result_tensor;
f::TensorCopy(rt, cpu_place, *(ctxs_[output_scope_idx]), &result_tensor); f::TensorCopySync(rt, cpu_place, &result_tensor);
float *ct = result_tensor.data<float>(); float *ct = result_tensor.data<float>();
for (int64_t j = 0; j < f::product(result_tensor.dims()); ++j) { for (int64_t j = 0; j < f::product(result_tensor.dims()); ++j) {
......
...@@ -25,12 +25,22 @@ namespace paddle { ...@@ -25,12 +25,22 @@ namespace paddle {
namespace framework { namespace framework {
namespace details { namespace details {
// A SSA graph used by parallel executor.
struct SSAGraph { struct SSAGraph {
// all variable in each devices.
// The outside vector is the device vector. Each element of this vector is a
// map from variable name to variables. The variables, who have the same name,
// will have a different version. The offset in the
// `std::vector<std::unique_ptr<VarHandle>>` is the version of varaibles.
std::vector< std::vector<
std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>> std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>
vars_; vars_;
// aux variables to represent dependency. Useful to resolve data hazard. // aux variables to represent dependency. Useful to resolve data hazard.
std::unordered_set<std::unique_ptr<VarHandleBase>> dep_vars_; std::unordered_set<std::unique_ptr<VarHandleBase>> dep_vars_;
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
std::vector<std::unique_ptr<OpHandleBase>> ops_; std::vector<std::unique_ptr<OpHandleBase>> ops_;
}; };
......
...@@ -48,6 +48,8 @@ class SSAGraphBuilder { ...@@ -48,6 +48,8 @@ class SSAGraphBuilder {
const platform::Place &place, const platform::Place &place,
size_t place_offset); size_t place_offset);
// Add an output variable (each_var_name, place, place_offset) to op_handle,
// which belongs to graph
static void CreateOpOutput(SSAGraph *graph, OpHandleBase *op_handle, static void CreateOpOutput(SSAGraph *graph, OpHandleBase *op_handle,
const std::string &each_var_name, const std::string &each_var_name,
const platform::Place &place, size_t place_offset); const platform::Place &place, size_t place_offset);
......
...@@ -15,7 +15,6 @@ limitations under the License. */ ...@@ -15,7 +15,6 @@ limitations under the License. */
#include <algorithm> #include <algorithm>
#include <stdexcept> #include <stdexcept>
#include <string> #include <string>
#include <vector>
#include "paddle/fluid/framework/init.h" #include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/operator.h"
...@@ -31,6 +30,7 @@ std::once_flag p2p_init_flag; ...@@ -31,6 +30,7 @@ std::once_flag p2p_init_flag;
void InitGflags(std::vector<std::string> argv) { void InitGflags(std::vector<std::string> argv) {
std::call_once(gflags_init_flag, [&]() { std::call_once(gflags_init_flag, [&]() {
argv.insert(argv.begin(), "dummy");
int argc = argv.size(); int argc = argv.size();
char **arr = new char *[argv.size()]; char **arr = new char *[argv.size()];
std::string line; std::string line;
...@@ -44,20 +44,23 @@ void InitGflags(std::vector<std::string> argv) { ...@@ -44,20 +44,23 @@ void InitGflags(std::vector<std::string> argv) {
}); });
} }
void InitP2P(int count) { void InitP2P(std::vector<int> devices) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
std::call_once(p2p_init_flag, [&]() { std::call_once(p2p_init_flag, [&]() {
int count = devices.size();
for (int i = 0; i < count; ++i) { for (int i = 0; i < count; ++i) {
for (int j = 0; j < count; ++j) { for (int j = 0; j < count; ++j) {
if (i == j) continue; if (devices[i] == devices[j]) continue;
int can_acess = -1; int can_acess = -1;
PADDLE_ENFORCE(cudaDeviceCanAccessPeer(&can_acess, i, j), PADDLE_ENFORCE(
"Failed to test P2P access."); cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]),
"Failed to test P2P access.");
if (can_acess != 1) { if (can_acess != 1) {
LOG(WARNING) << "Cannot enable P2P access from " << i << " to " << j; LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
<< " to " << devices[j];
} else { } else {
cudaSetDevice(i); cudaSetDevice(devices[i]);
cudaDeviceEnablePeerAccess(j, 0); cudaDeviceEnablePeerAccess(devices[j], 0);
} }
} }
} }
...@@ -67,11 +70,26 @@ void InitP2P(int count) { ...@@ -67,11 +70,26 @@ void InitP2P(int count) {
void InitDevices(bool init_p2p) { void InitDevices(bool init_p2p) {
/*Init all available devices by default */ /*Init all available devices by default */
std::vector<int> devices;
#ifdef PADDLE_WITH_CUDA
try {
int count = platform::GetCUDADeviceCount();
for (int i = 0; i < count; ++i) {
devices.push_back(i);
}
} catch (const std::exception &exp) {
LOG(WARNING) << "Compiled with WITH_GPU, but no GPU found in runtime.";
}
#else
LOG(WARNING)
<< "'CUDA' is not supported, Please re-compile with WITH_GPU option";
#endif
InitDevices(init_p2p, devices);
}
void InitDevices(bool init_p2p, const std::vector<int> devices) {
std::vector<platform::Place> places; std::vector<platform::Place> places;
places.emplace_back(platform::CPUPlace());
int count = 0; int count = 0;
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
try { try {
count = platform::GetCUDADeviceCount(); count = platform::GetCUDADeviceCount();
...@@ -83,12 +101,17 @@ void InitDevices(bool init_p2p) { ...@@ -83,12 +101,17 @@ void InitDevices(bool init_p2p) {
<< "'CUDA' is not supported, Please re-compile with WITH_GPU option"; << "'CUDA' is not supported, Please re-compile with WITH_GPU option";
#endif #endif
for (int i = 0; i < count; ++i) { for (size_t i = 0; i < devices.size(); ++i) {
places.emplace_back(platform::CUDAPlace(i)); if (devices[i] >= count || devices[i] < 0) {
LOG(WARNING) << "Invalid devices id.";
continue;
}
places.emplace_back(platform::CUDAPlace(devices[i]));
} }
if (init_p2p) { if (init_p2p) {
InitP2P(count); InitP2P(devices);
} }
places.emplace_back(platform::CPUPlace());
platform::DeviceContextPool::Init(places); platform::DeviceContextPool::Init(places);
} }
......
...@@ -28,5 +28,7 @@ void InitGLOG(const std::string &prog_name); ...@@ -28,5 +28,7 @@ void InitGLOG(const std::string &prog_name);
void InitDevices(bool init_p2p); void InitDevices(bool init_p2p);
void InitDevices(bool init_p2p, const std::vector<int> devices);
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -20,7 +20,7 @@ namespace paddle { ...@@ -20,7 +20,7 @@ namespace paddle {
namespace framework { namespace framework {
void TensorCopy(const Tensor& src, const platform::Place& dst_place, void TensorCopy(const Tensor& src, const platform::Place& dst_place,
const platform::DeviceContext& ctx, Tensor* dst, bool sync) { const platform::DeviceContext& ctx, Tensor* dst) {
VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to " VLOG(3) << "TensorCopy " << src.dims() << " from " << src.place() << " to "
<< dst_place; << dst_place;
src.check_memory_size(); src.check_memory_size();
...@@ -48,9 +48,7 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place, ...@@ -48,9 +48,7 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
auto ctx_gpu_place = boost::get<platform::CUDAPlace>(ctx_place); auto ctx_gpu_place = boost::get<platform::CUDAPlace>(ctx_place);
PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place); PADDLE_ENFORCE_EQ(src_gpu_place, ctx_gpu_place);
auto stream = auto stream =
sync ? nullptr reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
: reinterpret_cast<const platform::CUDADeviceContext&>(ctx)
.stream();
memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream); memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
} else if (platform::is_cpu_place(src_place) && } else if (platform::is_cpu_place(src_place) &&
platform::is_gpu_place(dst_place)) { platform::is_gpu_place(dst_place)) {
...@@ -61,9 +59,7 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place, ...@@ -61,9 +59,7 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
auto ctx_gpu_place = boost::get<platform::CUDAPlace>(ctx_place); auto ctx_gpu_place = boost::get<platform::CUDAPlace>(ctx_place);
PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place); PADDLE_ENFORCE_EQ(dst_gpu_place, ctx_gpu_place);
auto stream = auto stream =
sync ? nullptr reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
: reinterpret_cast<const platform::CUDADeviceContext&>(ctx)
.stream();
memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream); memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, stream);
} else if (platform::is_gpu_place(src_place) && } else if (platform::is_gpu_place(src_place) &&
platform::is_gpu_place(dst_place)) { platform::is_gpu_place(dst_place)) {
...@@ -72,9 +68,7 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place, ...@@ -72,9 +68,7 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
auto ctx_place = ctx.GetPlace(); auto ctx_place = ctx.GetPlace();
PADDLE_ENFORCE(platform::is_gpu_place(ctx_place)); PADDLE_ENFORCE(platform::is_gpu_place(ctx_place));
auto stream = auto stream =
sync ? nullptr reinterpret_cast<const platform::CUDADeviceContext&>(ctx).stream();
: reinterpret_cast<const platform::CUDADeviceContext&>(ctx)
.stream();
memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream); memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, stream);
} }
#endif #endif
...@@ -92,6 +86,41 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place, ...@@ -92,6 +86,41 @@ void TensorCopy(const Tensor& src, const platform::Place& dst_place,
TensorCopy(src, dst_place, *dev_ctx, dst); TensorCopy(src, dst_place, *dev_ctx, dst);
} }
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
Tensor* dst) {
VLOG(3) << "TensorCopySync " << src.dims() << " from " << src.place()
<< " to " << dst_place;
src.check_memory_size();
dst->Resize(src.dims());
dst->set_layout(src.layout());
auto src_place = src.place();
auto src_ptr = src.data<void>();
auto dst_ptr = dst->mutable_data(dst_place, src.type());
auto size = src.numel() * SizeOfType(src.type());
if (platform::is_cpu_place(src_place) && platform::is_cpu_place(dst_place)) {
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
boost::get<platform::CPUPlace>(src_place), src_ptr, size);
}
#ifdef PADDLE_WITH_CUDA
else if (platform::is_gpu_place(src_place) && // NOLINT
platform::is_cpu_place(dst_place)) {
auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
auto dst_cpu_place = boost::get<platform::CPUPlace>(dst_place);
memory::Copy(dst_cpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
} else if (platform::is_cpu_place(src_place) &&
platform::is_gpu_place(dst_place)) {
auto src_cpu_place = boost::get<platform::CPUPlace>(src_place);
auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
memory::Copy(dst_gpu_place, dst_ptr, src_cpu_place, src_ptr, size, nullptr);
} else if (platform::is_gpu_place(src_place) &&
platform::is_gpu_place(dst_place)) {
auto src_gpu_place = boost::get<platform::CUDAPlace>(src_place);
auto dst_gpu_place = boost::get<platform::CUDAPlace>(dst_place);
memory::Copy(dst_gpu_place, dst_ptr, src_gpu_place, src_ptr, size, nullptr);
}
#endif
}
template <typename Predicate, typename DevCtx> template <typename Predicate, typename DevCtx>
struct AnyDTypeVisitor { struct AnyDTypeVisitor {
Predicate predicate_; Predicate predicate_;
......
...@@ -24,10 +24,11 @@ namespace paddle { ...@@ -24,10 +24,11 @@ namespace paddle {
namespace framework { namespace framework {
void TensorCopy(const Tensor& src, const platform::Place& dst_place, void TensorCopy(const Tensor& src, const platform::Place& dst_place,
const platform::DeviceContext& ctx, Tensor* dst, const platform::DeviceContext& ctx, Tensor* dst);
bool sync = false);
void TensorCopy(const Tensor& src, const platform::Place& dst_place, void TensorCopy(const Tensor& src, const platform::Place& dst_place,
Tensor* dst); Tensor* dst);
void TensorCopySync(const Tensor& src, const platform::Place& dst_place,
Tensor* dst);
template <typename T> template <typename T>
void TensorFromVector(const std::vector<T>& src, void TensorFromVector(const std::vector<T>& src,
......
...@@ -46,7 +46,6 @@ class EngineBase { ...@@ -46,7 +46,6 @@ class EngineBase {
virtual void Execute(int batch_size) = 0; virtual void Execute(int batch_size) = 0;
virtual ~EngineBase() {} virtual ~EngineBase() {}
}; // class EngineBase }; // class EngineBase
} // namespace inference } // namespace inference
......
...@@ -16,17 +16,29 @@ limitations under the License. */ ...@@ -16,17 +16,29 @@ limitations under the License. */
#include <algorithm> #include <algorithm>
#include <fstream> #include <fstream>
#include <vector>
#include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/feed_fetch_type.h" #include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/pybind/pybind.h" #include "paddle/fluid/pybind/pybind.h"
DEFINE_string(devices, "", "The devices to be used which is joined by comma.");
DEFINE_bool(init_p2p, false, "Whether to init p2p.");
namespace paddle { namespace paddle {
namespace inference { namespace inference {
// Temporarily add this function for exposing framework::InitDevices() when void Init(const std::vector<std::string> argv) {
// linking the inference shared library. framework::InitGflags(argv);
void Init(bool init_p2p) { framework::InitDevices(init_p2p); } // init devices
std::vector<int> devices;
std::string token;
std::istringstream tokenStream(FLAGS_devices);
while (std::getline(tokenStream, token, ',')) {
devices.push_back(std::stoi(token));
}
framework::InitDevices(FLAGS_init_p2p, devices);
}
void ReadBinaryFile(const std::string& filename, std::string* contents) { void ReadBinaryFile(const std::string& filename, std::string* contents) {
std::ifstream fin(filename, std::ios::in | std::ios::binary); std::ifstream fin(filename, std::ios::in | std::ios::binary);
......
...@@ -25,7 +25,7 @@ limitations under the License. */ ...@@ -25,7 +25,7 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace inference { namespace inference {
void Init(bool init_p2p); void Init(const std::vector<std::string> argv);
void LoadPersistables(framework::Executor* executor, framework::Scope* scope, void LoadPersistables(framework::Executor* executor, framework::Scope* scope,
const framework::ProgramDesc& main_program, const framework::ProgramDesc& main_program,
......
...@@ -17,6 +17,7 @@ limitations under the License. */ ...@@ -17,6 +17,7 @@ limitations under the License. */
#include <NvInfer.h> #include <NvInfer.h>
#include <cuda.h> #include <cuda.h>
#include <glog/logging.h> #include <glog/logging.h>
#include <string>
#include "paddle/fluid/inference/tensorrt/helper.h" #include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/enforce.h"
......
...@@ -16,7 +16,9 @@ limitations under the License. */ ...@@ -16,7 +16,9 @@ limitations under the License. */
#include <NvInfer.h> #include <NvInfer.h>
#include <memory> #include <memory>
#include <string>
#include <unordered_map> #include <unordered_map>
#include <vector>
#include "paddle/fluid/inference/engine.h" #include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h" #include "paddle/fluid/inference/tensorrt/helper.h"
...@@ -56,9 +58,9 @@ class TensorRTEngine : public EngineBase { ...@@ -56,9 +58,9 @@ class TensorRTEngine : public EngineBase {
virtual ~TensorRTEngine(); virtual ~TensorRTEngine();
// TODO(Superjomn) implement it later when graph segmentation is supported. // TODO(Superjomn) implement it later when graph segmentation is supported.
virtual void Build(const DescType& paddle_model) override; void Build(const DescType& paddle_model) override;
virtual void Execute(int batch_size) override; void Execute(int batch_size) override;
// Initialize the inference network, so that TensorRT layers can add to this // Initialize the inference network, so that TensorRT layers can add to this
// network. // network.
......
...@@ -12,13 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,13 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/inference/tensorrt/engine.h"
#include <cuda.h> #include <cuda.h>
#include <cuda_runtime_api.h> #include <cuda_runtime_api.h>
#include <glog/logging.h> #include <glog/logging.h>
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/enforce.h"
namespace paddle { namespace paddle {
...@@ -65,7 +64,8 @@ TEST_F(TensorRTEngineTest, add_layer) { ...@@ -65,7 +64,8 @@ TEST_F(TensorRTEngineTest, add_layer) {
// fill in real data // fill in real data
float x_v = 1234; float x_v = 1234;
engine_->SetInputFromCPU("x", (void*)&x_v, 1 * sizeof(float)); engine_->SetInputFromCPU("x", reinterpret_cast<void*>(&x_v),
1 * sizeof(float));
LOG(INFO) << "to execute"; LOG(INFO) << "to execute";
engine_->Execute(1); engine_->Execute(1);
......
...@@ -62,5 +62,21 @@ TEST(inference, image_classification) { ...@@ -62,5 +62,21 @@ TEST(inference, image_classification) {
LOG(INFO) << output2.dims(); LOG(INFO) << output2.dims();
CheckError<float>(output1, output2); CheckError<float>(output1, output2);
// float16 inference requires cuda GPUs with >= 5.3 compute capability
if (paddle::platform::GetCUDAComputeCapability(0) >= 53) {
paddle::framework::LoDTensor output3;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs3;
cpu_fetchs3.push_back(&output3);
LOG(INFO) << "--- GPU Runs in float16 mode: ---";
std::string fp16_dirname = dirname;
fp16_dirname.replace(fp16_dirname.find("book/"),
std::string("book/").size(), "book/float16_");
TestInference<paddle::platform::CUDAPlace, false, true>(
fp16_dirname, cpu_feeds, cpu_fetchs3, FLAGS_repeat);
CheckError<float>(output2, output3);
}
#endif #endif
} }
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once #pragma once
#include <math.h> // for sqrt in CPU and CUDA #include <math.h> // for sqrt in CPU and CUDA
#include <Eigen/Dense>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h" #include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h" #include "paddle/fluid/operators/math/selected_rows_functor.h"
...@@ -24,8 +25,14 @@ namespace operators { ...@@ -24,8 +25,14 @@ namespace operators {
namespace scatter = paddle::operators::math::scatter; namespace scatter = paddle::operators::math::scatter;
struct GPUAdam;
struct CPUAdam;
template <typename T, typename Flavour>
struct AdamFunctor;
template <typename T> template <typename T>
struct AdamFunctor { struct AdamFunctor<T, GPUAdam> {
T beta1_; T beta1_;
T beta2_; T beta2_;
T epsilon_; T epsilon_;
...@@ -71,6 +78,7 @@ struct AdamFunctor { ...@@ -71,6 +78,7 @@ struct AdamFunctor {
// Calculation // Calculation
lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow); lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
mom1 = beta1_ * mom1 + (1 - beta1_) * g; mom1 = beta1_ * mom1 + (1 - beta1_) * g;
mom2 = beta2_ * mom2 + (1 - beta2_) * g * g; mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
p -= lr * (mom1 / (sqrt(mom2) + epsilon_)); p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
...@@ -82,6 +90,71 @@ struct AdamFunctor { ...@@ -82,6 +90,71 @@ struct AdamFunctor {
} }
}; };
template <typename T>
struct AdamFunctor<T, CPUAdam> {
T beta1_;
T beta2_;
T epsilon_;
const T* beta1_pow_;
const T* beta2_pow_;
const T* moment1_;
T* moment1_out_;
const T* moment2_;
T* moment2_out_;
const T* lr_;
const T* grad_;
const T* param_;
T* param_out_;
AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
T* mom2_out, const T* lr, const T* grad, const T* param,
T* param_out)
: beta1_(beta1),
beta2_(beta2),
epsilon_(epsilon),
beta1_pow_(beta1_pow),
beta2_pow_(beta2_pow),
moment1_(mom1),
moment1_out_(mom1_out),
moment2_(mom2),
moment2_out_(mom2_out),
lr_(lr),
grad_(grad),
param_(param),
param_out_(param_out) {}
void operator()(size_t numel) const {
Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> g{
grad_, static_cast<Eigen::Index>(numel)};
Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom1{
moment1_, static_cast<Eigen::Index>(numel)};
Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom2{
moment2_, static_cast<Eigen::Index>(numel)};
Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> param{
param_, static_cast<Eigen::Index>(numel)};
Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> param_out{
param_out_, static_cast<Eigen::Index>(numel)};
Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment1_out{
moment1_out_, static_cast<Eigen::Index>(numel)};
Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment2_out{
moment2_out_, static_cast<Eigen::Index>(numel)};
T lr = *lr_;
T beta1_pow = *beta1_pow_;
T beta2_pow = *beta2_pow_;
// Calculation
lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
moment1_out = beta1_ * mom1 + (1 - beta1_) * g;
moment2_out = beta2_ * mom2 + (1 - beta2_) * g * g;
param_out = param - lr * (moment1_out / (moment2_out.sqrt() + epsilon_));
}
};
template <typename T> template <typename T>
struct SparseAdamFunctor { struct SparseAdamFunctor {
T beta1_; T beta1_;
...@@ -134,6 +207,7 @@ struct SparseAdamFunctor { ...@@ -134,6 +207,7 @@ struct SparseAdamFunctor {
T p = param_[rows_[i] * row_numel_ + j]; T p = param_[rows_[i] * row_numel_ + j];
lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow); lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
mom1 = beta1_ * mom1 + (1 - beta1_) * g; mom1 = beta1_ * mom1 + (1 - beta1_) * g;
mom2 = beta2_ * mom2 + (1 - beta2_) * g * g; mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
p -= lr * (mom1 / (sqrt(mom2) + epsilon_)); p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
...@@ -177,19 +251,34 @@ class AdamOpKernel : public framework::OpKernel<T> { ...@@ -177,19 +251,34 @@ class AdamOpKernel : public framework::OpKernel<T> {
if (grad_var->IsType<framework::LoDTensor>()) { if (grad_var->IsType<framework::LoDTensor>()) {
auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad"); auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
AdamFunctor<T> functor(
beta1, beta2, epsilon, beta1_pow.template data<T>(), if (platform::is_cpu_place(ctx.GetPlace())) {
beta2_pow.template data<T>(), mom1.template data<T>(), AdamFunctor<T, CPUAdam> functor(
mom1_out.template mutable_data<T>(ctx.GetPlace()), beta1, beta2, epsilon, beta1_pow.template data<T>(),
mom2.template data<T>(), beta2_pow.template data<T>(), mom1.template data<T>(),
mom2_out.template mutable_data<T>(ctx.GetPlace()), mom1_out.template mutable_data<T>(ctx.GetPlace()),
lr.template data<T>(), grad.template data<T>(), mom2.template data<T>(),
param.template data<T>(), mom2_out.template mutable_data<T>(ctx.GetPlace()),
param_out.template mutable_data<T>(ctx.GetPlace())); lr.template data<T>(), grad.template data<T>(),
platform::ForRange<DeviceContext> for_range( param.template data<T>(),
static_cast<const DeviceContext&>(ctx.device_context()), param_out.template mutable_data<T>(ctx.GetPlace()));
param.numel()); functor(param.numel());
for_range(functor); } else if (platform::is_gpu_place(ctx.GetPlace())) {
AdamFunctor<T, GPUAdam> functor(
beta1, beta2, epsilon, beta1_pow.template data<T>(),
beta2_pow.template data<T>(), mom1.template data<T>(),
mom1_out.template mutable_data<T>(ctx.GetPlace()),
mom2.template data<T>(),
mom2_out.template mutable_data<T>(ctx.GetPlace()),
lr.template data<T>(), grad.template data<T>(),
param.template data<T>(),
param_out.template mutable_data<T>(ctx.GetPlace()));
platform::ForRange<DeviceContext> for_range(
static_cast<const DeviceContext&>(ctx.device_context()),
param.numel());
for_range(functor);
}
} else if (grad_var->IsType<framework::SelectedRows>()) { } else if (grad_var->IsType<framework::SelectedRows>()) {
auto& grad = auto& grad =
Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad"); Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad");
......
...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "channel_util.h" #include "paddle/fluid/operators/concurrency/channel_util.h"
#include "paddle/fluid/framework/var_type.h" #include "paddle/fluid/framework/var_type.h"
namespace poc = paddle::operators::concurrency; namespace poc = paddle::operators::concurrency;
......
...@@ -30,9 +30,13 @@ enum CallStatus { PROCESS = 0, FINISH }; ...@@ -30,9 +30,13 @@ enum CallStatus { PROCESS = 0, FINISH };
class RequestBase { class RequestBase {
public: public:
explicit RequestBase(GrpcService::AsyncService* service, explicit RequestBase(GrpcService::AsyncService* service,
::grpc::ServerCompletionQueue* cq, ::grpc::ServerCompletionQueue* cq, bool sync_mode,
const platform::DeviceContext* dev_ctx) const platform::DeviceContext* dev_ctx)
: service_(service), cq_(cq), status_(PROCESS), dev_ctx_(dev_ctx) { : service_(service),
cq_(cq),
sync_mode_(sync_mode),
status_(PROCESS),
dev_ctx_(dev_ctx) {
PADDLE_ENFORCE(cq_); PADDLE_ENFORCE(cq_);
} }
virtual ~RequestBase() {} virtual ~RequestBase() {}
...@@ -49,6 +53,7 @@ class RequestBase { ...@@ -49,6 +53,7 @@ class RequestBase {
::grpc::ServerContext ctx_; ::grpc::ServerContext ctx_;
GrpcService::AsyncService* service_; GrpcService::AsyncService* service_;
::grpc::ServerCompletionQueue* cq_; ::grpc::ServerCompletionQueue* cq_;
const bool sync_mode_;
CallStatus status_; CallStatus status_;
const platform::DeviceContext* dev_ctx_; const platform::DeviceContext* dev_ctx_;
}; };
...@@ -56,11 +61,17 @@ class RequestBase { ...@@ -56,11 +61,17 @@ class RequestBase {
class RequestSend final : public RequestBase { class RequestSend final : public RequestBase {
public: public:
explicit RequestSend(GrpcService::AsyncService* service, explicit RequestSend(GrpcService::AsyncService* service,
::grpc::ServerCompletionQueue* cq, ::grpc::ServerCompletionQueue* cq, bool sync_mode,
framework::Scope* scope, ReceivedQueue* queue, framework::Scope* scope, ReceivedQueue* queue,
const platform::DeviceContext* dev_ctx) const platform::DeviceContext* dev_ctx)
: RequestBase(service, cq, dev_ctx), queue_(queue), responder_(&ctx_) { : RequestBase(service, cq, sync_mode, dev_ctx),
request_.reset(new VariableResponse(scope, dev_ctx_)); queue_(queue),
responder_(&ctx_) {
if (sync_mode_) {
request_.reset(new VariableResponse(scope, dev_ctx_, false));
} else {
request_.reset(new VariableResponse(scope, dev_ctx_, true));
}
int method_id = static_cast<int>(detail::GrpcMethod::kSendVariable); int method_id = static_cast<int>(detail::GrpcMethod::kSendVariable);
service_->RequestAsyncUnary(method_id, &ctx_, request_.get(), &responder_, service_->RequestAsyncUnary(method_id, &ctx_, request_.get(), &responder_,
cq_, cq_, this); cq_, cq_, this);
...@@ -87,11 +98,11 @@ class RequestSend final : public RequestBase { ...@@ -87,11 +98,11 @@ class RequestSend final : public RequestBase {
class RequestGet final : public RequestBase { class RequestGet final : public RequestBase {
public: public:
explicit RequestGet(GrpcService::AsyncService* service, explicit RequestGet(GrpcService::AsyncService* service,
::grpc::ServerCompletionQueue* cq, ::grpc::ServerCompletionQueue* cq, bool sync_mode,
framework::Scope* scope, framework::Scope* scope,
const platform::DeviceContext* dev_ctx, const platform::DeviceContext* dev_ctx,
framework::BlockingQueue<MessageWithName>* queue) framework::BlockingQueue<MessageWithName>* queue)
: RequestBase(service, cq, dev_ctx), : RequestBase(service, cq, sync_mode, dev_ctx),
responder_(&ctx_), responder_(&ctx_),
scope_(scope), scope_(scope),
queue_(queue) { queue_(queue) {
...@@ -134,19 +145,23 @@ class RequestGet final : public RequestBase { ...@@ -134,19 +145,23 @@ class RequestGet final : public RequestBase {
class RequestPrefetch final : public RequestBase { class RequestPrefetch final : public RequestBase {
public: public:
explicit RequestPrefetch(GrpcService::AsyncService* service, explicit RequestPrefetch(GrpcService::AsyncService* service,
::grpc::ServerCompletionQueue* cq, ::grpc::ServerCompletionQueue* cq, bool sync_mode,
framework::Scope* scope, framework::Scope* scope,
const platform::DeviceContext* dev_ctx, const platform::DeviceContext* dev_ctx,
framework::Executor* executor, framework::Executor* executor,
framework::ProgramDesc* program, framework::ProgramDesc* program,
framework::ExecutorPrepareContext* prefetch_ctx) framework::ExecutorPrepareContext* prefetch_ctx)
: RequestBase(service, cq, dev_ctx), : RequestBase(service, cq, sync_mode, dev_ctx),
responder_(&ctx_), responder_(&ctx_),
scope_(scope), scope_(scope),
executor_(executor), executor_(executor),
program_(program), program_(program),
prefetch_ctx_(prefetch_ctx) { prefetch_ctx_(prefetch_ctx) {
request_.reset(new VariableResponse(scope, dev_ctx_)); if (sync_mode_) {
request_.reset(new VariableResponse(scope, dev_ctx_, false));
} else {
request_.reset(new VariableResponse(scope, dev_ctx_, true));
}
int method_id = static_cast<int>(detail::GrpcMethod::kPrefetchVariable); int method_id = static_cast<int>(detail::GrpcMethod::kPrefetchVariable);
service_->RequestAsyncUnary(method_id, &ctx_, request_.get(), &responder_, service_->RequestAsyncUnary(method_id, &ctx_, request_.get(), &responder_,
cq_, cq_, this); cq_, cq_, this);
...@@ -181,7 +196,6 @@ class RequestPrefetch final : public RequestBase { ...@@ -181,7 +196,6 @@ class RequestPrefetch final : public RequestBase {
framework::Executor* executor_; framework::Executor* executor_;
framework::ProgramDesc* program_; framework::ProgramDesc* program_;
framework::ExecutorPrepareContext* prefetch_ctx_; framework::ExecutorPrepareContext* prefetch_ctx_;
int blkid_;
}; };
void AsyncGRPCServer::WaitClientGet(int count) { void AsyncGRPCServer::WaitClientGet(int count) {
...@@ -254,8 +268,8 @@ void AsyncGRPCServer::TryToRegisterNewSendOne() { ...@@ -254,8 +268,8 @@ void AsyncGRPCServer::TryToRegisterNewSendOne() {
VLOG(3) << "shutdown, do not TryToRegisterNewSendOne"; VLOG(3) << "shutdown, do not TryToRegisterNewSendOne";
return; return;
} }
RequestSend* send = new RequestSend(&service_, cq_send_.get(), scope_, RequestSend* send = new RequestSend(&service_, cq_send_.get(), sync_mode_,
&var_recv_queue_, dev_ctx_); scope_, &var_recv_queue_, dev_ctx_);
VLOG(4) << "Create RequestSend status:" << send->Status(); VLOG(4) << "Create RequestSend status:" << send->Status();
} }
...@@ -265,8 +279,8 @@ void AsyncGRPCServer::TryToRegisterNewGetOne() { ...@@ -265,8 +279,8 @@ void AsyncGRPCServer::TryToRegisterNewGetOne() {
VLOG(3) << "shutdown, do not TryToRegisterNewGetOne"; VLOG(3) << "shutdown, do not TryToRegisterNewGetOne";
return; return;
} }
RequestGet* get = new RequestGet(&service_, cq_get_.get(), scope_, dev_ctx_, RequestGet* get = new RequestGet(&service_, cq_get_.get(), sync_mode_, scope_,
&var_get_queue_); dev_ctx_, &var_get_queue_);
VLOG(4) << "Create RequestGet status:" << get->Status(); VLOG(4) << "Create RequestGet status:" << get->Status();
} }
...@@ -277,8 +291,8 @@ void AsyncGRPCServer::TryToRegisterNewPrefetchOne() { ...@@ -277,8 +291,8 @@ void AsyncGRPCServer::TryToRegisterNewPrefetchOne() {
return; return;
} }
RequestPrefetch* prefetch = RequestPrefetch* prefetch =
new RequestPrefetch(&service_, cq_prefetch_.get(), scope_, dev_ctx_, new RequestPrefetch(&service_, cq_prefetch_.get(), sync_mode_, scope_,
executor_, program_, prefetch_ctx_); dev_ctx_, executor_, program_, prefetch_ctx_);
VLOG(4) << "Create RequestPrefetch status:" << prefetch->Status(); VLOG(4) << "Create RequestPrefetch status:" << prefetch->Status();
} }
...@@ -301,9 +315,11 @@ void AsyncGRPCServer::HandleRequest(::grpc::ServerCompletionQueue* cq, ...@@ -301,9 +315,11 @@ void AsyncGRPCServer::HandleRequest(::grpc::ServerCompletionQueue* cq,
VLOG(3) << "HandleRequest for " << cq_name << " while after Next"; VLOG(3) << "HandleRequest for " << cq_name << " while after Next";
PADDLE_ENFORCE(tag); PADDLE_ENFORCE(tag);
// FIXME(typhoonzero): de-couple the barriers with recv_op if (sync_mode_) {
if (!is_shut_down_ && cq_name == "cq_get") WaitCond(1); // FIXME(typhoonzero): de-couple the barriers with recv_op
if (!is_shut_down_ && cq_name == "cq_send") WaitCond(0); if (!is_shut_down_ && cq_name == "cq_get") WaitCond(1);
if (!is_shut_down_ && cq_name == "cq_send") WaitCond(0);
}
RequestBase* base = reinterpret_cast<RequestBase*>(tag); RequestBase* base = reinterpret_cast<RequestBase*>(tag);
// reference: // reference:
...@@ -320,13 +336,13 @@ void AsyncGRPCServer::HandleRequest(::grpc::ServerCompletionQueue* cq, ...@@ -320,13 +336,13 @@ void AsyncGRPCServer::HandleRequest(::grpc::ServerCompletionQueue* cq,
switch (base->Status()) { switch (base->Status()) {
case PROCESS: { case PROCESS: {
VLOG(4) << cq_name << " status:" << base->Status(); VLOG(4) << cq_name << " PROCESS status:" << base->Status();
TryToRegisterNewOne(); TryToRegisterNewOne();
base->Process(); base->Process();
break; break;
} }
case FINISH: { case FINISH: {
VLOG(4) << cq_name << " status:" << base->Status(); VLOG(4) << cq_name << " FINISH status:" << base->Status();
delete base; delete base;
break; break;
} }
......
...@@ -44,7 +44,8 @@ class RequestBase; ...@@ -44,7 +44,8 @@ class RequestBase;
class AsyncGRPCServer final { class AsyncGRPCServer final {
public: public:
explicit AsyncGRPCServer(const std::string &address) : address_(address) {} explicit AsyncGRPCServer(const std::string &address, bool sync_mode)
: address_(address), sync_mode_(sync_mode) {}
void RunSyncUpdate(); void RunSyncUpdate();
...@@ -95,6 +96,7 @@ class AsyncGRPCServer final { ...@@ -95,6 +96,7 @@ class AsyncGRPCServer final {
std::unique_ptr<::grpc::Server> server_; std::unique_ptr<::grpc::Server> server_;
std::string address_; std::string address_;
const bool sync_mode_;
framework::Scope *scope_; framework::Scope *scope_;
const platform::DeviceContext *dev_ctx_; const platform::DeviceContext *dev_ctx_;
......
...@@ -89,7 +89,7 @@ void InitTensorsOnServer(framework::Scope* scope, platform::CPUPlace* place, ...@@ -89,7 +89,7 @@ void InitTensorsOnServer(framework::Scope* scope, platform::CPUPlace* place,
} }
void StartServer(const std::string& endpoint) { void StartServer(const std::string& endpoint) {
rpc_service_.reset(new detail::AsyncGRPCServer(endpoint)); rpc_service_.reset(new detail::AsyncGRPCServer(endpoint, true));
framework::ProgramDesc program; framework::ProgramDesc program;
framework::Scope scope; framework::Scope scope;
platform::CPUPlace place; platform::CPUPlace place;
......
...@@ -46,7 +46,9 @@ class VariableResponse { ...@@ -46,7 +46,9 @@ class VariableResponse {
} }
virtual ~VariableResponse() { virtual ~VariableResponse() {
if (create_scope_) scope_->DeleteScope(local_scope_); if (create_scope_) {
scope_->DeleteScope(local_scope_);
}
} }
// return: // return:
...@@ -63,6 +65,8 @@ class VariableResponse { ...@@ -63,6 +65,8 @@ class VariableResponse {
const framework::Scope& GetLocalScope() const { return *local_scope_; } const framework::Scope& GetLocalScope() const { return *local_scope_; }
framework::Scope* GetMutableLocalScope() const { return local_scope_; }
inline std::string Varname() { return meta_.varname(); } inline std::string Varname() { return meta_.varname(); }
inline std::string OutVarname() { return meta_.out_varname(); } inline std::string OutVarname() { return meta_.out_varname(); }
......
...@@ -57,10 +57,7 @@ class FetchOp : public framework::OperatorBase { ...@@ -57,10 +57,7 @@ class FetchOp : public framework::OperatorBase {
// FIXME(yuyang18): Should we assume the fetch operator always generate // FIXME(yuyang18): Should we assume the fetch operator always generate
// CPU outputs? // CPU outputs?
auto &dev_ctx = *pool.Get(src_item.place()); TensorCopySync(src_item, platform::CPUPlace(), &dst_item);
TensorCopy(src_item, platform::CPUPlace(), dev_ctx, &dst_item);
dev_ctx.Wait();
dst_item.set_lod(src_item.lod()); dst_item.set_lod(src_item.lod());
VLOG(3) << "Fetch variable " << fetch_var_name << " to " << out_name; VLOG(3) << "Fetch variable " << fetch_var_name << " to " << out_name;
......
...@@ -34,7 +34,7 @@ inline void ReorderInitState(const DeviceContext& ctx, ...@@ -34,7 +34,7 @@ inline void ReorderInitState(const DeviceContext& ctx,
framework::Tensor* dst, bool indexed_src) { framework::Tensor* dst, bool indexed_src) {
math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle; math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
dst->mutable_data<T>(src.dims(), ctx.GetPlace()); dst->mutable_data<T>(src.dims(), ctx.GetPlace());
row_shuffle(ctx, src, index_lod, *dst, indexed_src); row_shuffle(ctx, src, index_lod, dst, indexed_src);
} }
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
...@@ -61,7 +61,7 @@ class GRUKernel : public framework::OpKernel<T> { ...@@ -61,7 +61,7 @@ class GRUKernel : public framework::OpKernel<T> {
bool is_reverse = context.Attr<bool>("is_reverse"); bool is_reverse = context.Attr<bool>("is_reverse");
math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch; math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
auto& dev_ctx = context.template device_context<DeviceContext>(); auto& dev_ctx = context.template device_context<DeviceContext>();
to_batch(dev_ctx, *input, *batch_gate, true, is_reverse); to_batch(dev_ctx, *input, batch_gate, true, is_reverse);
if (bias) { if (bias) {
math::RowwiseAdd<DeviceContext, T> add_bias; math::RowwiseAdd<DeviceContext, T> add_bias;
...@@ -113,7 +113,7 @@ class GRUKernel : public framework::OpKernel<T> { ...@@ -113,7 +113,7 @@ class GRUKernel : public framework::OpKernel<T> {
math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq; math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
batch_hidden->set_lod(batch_gate->lod()); batch_hidden->set_lod(batch_gate->lod());
to_seq(dev_ctx, *batch_hidden, *hidden); to_seq(dev_ctx, *batch_hidden, hidden);
} }
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
...@@ -174,7 +174,7 @@ class GRUGradKernel : public framework::OpKernel<T> { ...@@ -174,7 +174,7 @@ class GRUGradKernel : public framework::OpKernel<T> {
bool is_reverse = context.Attr<bool>("is_reverse"); bool is_reverse = context.Attr<bool>("is_reverse");
batch_hidden_grad.set_lod(batch_hidden->lod()); batch_hidden_grad.set_lod(batch_hidden->lod());
to_batch(dev_ctx, *hidden_grad, batch_hidden_grad, false, is_reverse); to_batch(dev_ctx, *hidden_grad, &batch_hidden_grad, false, is_reverse);
math::GRUMetaValue<T> gru_value; math::GRUMetaValue<T> gru_value;
gru_value.gate_weight = const_cast<T*>(weight_data); gru_value.gate_weight = const_cast<T*>(weight_data);
...@@ -236,7 +236,7 @@ class GRUGradKernel : public framework::OpKernel<T> { ...@@ -236,7 +236,7 @@ class GRUGradKernel : public framework::OpKernel<T> {
input_grad->mutable_data<T>(context.GetPlace()); input_grad->mutable_data<T>(context.GetPlace());
math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq; math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
batch_gate_grad.set_lod(batch_gate->lod()); batch_gate_grad.set_lod(batch_gate->lod());
to_seq(dev_ctx, batch_gate_grad, *input_grad); to_seq(dev_ctx, batch_gate_grad, input_grad);
} }
if (bias_grad) { if (bias_grad) {
bias_grad->mutable_data<T>(context.GetPlace()); bias_grad->mutable_data<T>(context.GetPlace());
......
...@@ -41,22 +41,24 @@ struct IOUSimilarityFunctor { ...@@ -41,22 +41,24 @@ struct IOUSimilarityFunctor {
IOUSimilarityFunctor(const T* x, const T* y, T* z, int cols) IOUSimilarityFunctor(const T* x, const T* y, T* z, int cols)
: x_(x), y_(y), z_(z), cols_(static_cast<size_t>(cols)) {} : x_(x), y_(y), z_(z), cols_(static_cast<size_t>(cols)) {}
inline HOSTDEVICE void operator()(size_t row_id) const { inline HOSTDEVICE void operator()(size_t tid) const {
size_t row_id = tid / cols_;
size_t col_id = tid % cols_;
T x_min1 = x_[row_id * 4]; T x_min1 = x_[row_id * 4];
T y_min1 = x_[row_id * 4 + 1]; T y_min1 = x_[row_id * 4 + 1];
T x_max1 = x_[row_id * 4 + 2]; T x_max1 = x_[row_id * 4 + 2];
T y_max1 = x_[row_id * 4 + 3]; T y_max1 = x_[row_id * 4 + 3];
for (size_t i = 0; i < cols_; ++i) {
T x_min2 = y_[i * 4];
T y_min2 = y_[i * 4 + 1];
T x_max2 = y_[i * 4 + 2];
T y_max2 = y_[i * 4 + 3];
T sim = IOUSimilarity(x_min1, y_min1, x_max1, y_max1, x_min2, y_min2, T x_min2 = y_[col_id * 4];
x_max2, y_max2); T y_min2 = y_[col_id * 4 + 1];
T x_max2 = y_[col_id * 4 + 2];
T y_max2 = y_[col_id * 4 + 3];
T sim = IOUSimilarity(x_min1, y_min1, x_max1, y_max1, x_min2, y_min2,
x_max2, y_max2);
z_[row_id * cols_ + i] = sim; z_[row_id * cols_ + col_id] = sim;
}
} }
const T* x_; const T* x_;
const T* y_; const T* y_;
...@@ -81,7 +83,7 @@ class IOUSimilarityKernel : public framework::OpKernel<T> { ...@@ -81,7 +83,7 @@ class IOUSimilarityKernel : public framework::OpKernel<T> {
out->mutable_data<T>(ctx.GetPlace()), y_n); out->mutable_data<T>(ctx.GetPlace()), y_n);
platform::ForRange<DeviceContext> for_range( platform::ForRange<DeviceContext> for_range(
static_cast<const DeviceContext&>(ctx.device_context()), x_n); static_cast<const DeviceContext&>(ctx.device_context()), x_n * y_n);
for_range(functor); for_range(functor);
} }
}; // namespace operators }; // namespace operators
......
...@@ -27,6 +27,38 @@ void RunServer(std::shared_ptr<detail::AsyncGRPCServer> service) { ...@@ -27,6 +27,38 @@ void RunServer(std::shared_ptr<detail::AsyncGRPCServer> service) {
VLOG(4) << "RunServer thread end"; VLOG(4) << "RunServer thread end";
} }
static void split(const std::string &str, char sep,
std::vector<std::string> *pieces) {
pieces->clear();
if (str.empty()) {
return;
}
size_t pos = 0;
size_t next = str.find(sep, pos);
while (next != std::string::npos) {
pieces->push_back(str.substr(pos, next - pos));
pos = next + 1;
next = str.find(sep, pos);
}
if (!str.substr(pos).empty()) {
pieces->push_back(str.substr(pos));
}
}
static void AsyncExecuteBlock(framework::Executor *executor,
framework::ExecutorPrepareContext *prepared,
framework::Scope *scope) {
std::future<void> future = framework::Async([&executor, &prepared, &scope]() {
try {
executor->RunPreparedContext(prepared, scope, false, false);
} catch (std::exception &e) {
LOG(ERROR) << "run sub program error " << e.what();
}
});
// TODO(qiao) maybe we can remove this
future.wait();
}
static void ParallelExecuteBlocks( static void ParallelExecuteBlocks(
const std::vector<size_t> &parallel_blkids, framework::Executor *executor, const std::vector<size_t> &parallel_blkids, framework::Executor *executor,
const std::vector<std::shared_ptr<framework::ExecutorPrepareContext>> const std::vector<std::shared_ptr<framework::ExecutorPrepareContext>>
...@@ -169,15 +201,82 @@ void ListenAndServOp::RunSyncLoop(framework::Executor *executor, ...@@ -169,15 +201,82 @@ void ListenAndServOp::RunSyncLoop(framework::Executor *executor,
} // while(true) } // while(true)
} }
void ListenAndServOp::RunAsyncLoop(framework::Executor *executor,
framework::ProgramDesc *program,
framework::Scope *recv_scope,
framework::BlockDesc *prefetch_block) const {
VLOG(3) << "RunAsyncLoop in";
// grad name to block id
std::unordered_map<std::string, int32_t> grad_to_block_id;
std::unordered_map<int32_t, std::string> id_to_grad;
auto grad_to_block_id_str =
Attr<std::vector<std::string>>("grad_to_block_id");
for (auto &grad_and_id : grad_to_block_id_str) {
std::vector<std::string> pieces;
split(grad_and_id, ':', &pieces);
VLOG(3) << "after split, grad = " << pieces[0] << ", id=" << pieces[1];
PADDLE_ENFORCE_EQ(pieces.size(), 2);
PADDLE_ENFORCE_EQ(grad_to_block_id.count(pieces[0]), 0);
int block_id = std::stoi(pieces[1]);
grad_to_block_id[pieces[0]] = block_id;
id_to_grad[block_id] = pieces[0];
}
size_t num_blocks = program->Size();
PADDLE_ENFORCE_GE(num_blocks, 2,
"server program should have at least 2 blocks");
std::vector<int> block_list;
for (size_t blkid = 1; blkid < num_blocks; ++blkid) {
block_list.push_back(blkid);
}
auto optimize_prepared = executor->Prepare(*program, block_list);
std::unordered_map<std::string,
std::shared_ptr<framework::ExecutorPrepareContext>>
grad_to_prepared_ctx;
for (size_t i = 0; i < block_list.size(); ++i) {
grad_to_prepared_ctx[id_to_grad[block_list[i]]] = optimize_prepared[i];
}
VLOG(3) << "RunAsyncLoop into while";
bool exit_flag = false;
while (!exit_flag) {
const detail::ReceivedMessage v = rpc_service_->Get();
auto recv_var_name = v.first;
if (recv_var_name == LISTEN_TERMINATE_MESSAGE) {
LOG(INFO) << "received terminate message and exit";
exit_flag = true;
break;
} else {
VLOG(3) << "received grad: " << recv_var_name;
auto var = v.second->GetVar();
if (var == nullptr) {
LOG(ERROR) << "Can not find server side var: " << recv_var_name;
PADDLE_THROW("Can not find server side var");
}
AsyncExecuteBlock(executor, grad_to_prepared_ctx[recv_var_name].get(),
v.second->GetMutableLocalScope());
}
if (exit_flag) {
rpc_service_->ShutDown();
break;
}
} // while(true)
}
void ListenAndServOp::RunImpl(const framework::Scope &scope, void ListenAndServOp::RunImpl(const framework::Scope &scope,
const platform::Place &dev_place) const { const platform::Place &dev_place) const {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(dev_place); auto &dev_ctx = *pool.Get(dev_place);
framework::Scope &recv_scope = scope.NewScope(); framework::Scope &recv_scope = scope.NewScope();
bool sync_mode = Attr<bool>("sync_mode");
PADDLE_ENFORCE(!rpc_service_); PADDLE_ENFORCE(!rpc_service_);
std::string endpoint = Attr<std::string>("endpoint"); std::string endpoint = Attr<std::string>("endpoint");
rpc_service_.reset(new detail::AsyncGRPCServer(endpoint));
rpc_service_.reset(new detail::AsyncGRPCServer(endpoint, sync_mode));
auto *optimize_block = Attr<framework::BlockDesc *>(kOptimizeBlock); auto *optimize_block = Attr<framework::BlockDesc *>(kOptimizeBlock);
auto *prefetch_block = Attr<framework::BlockDesc *>(kPrefetchBlock); auto *prefetch_block = Attr<framework::BlockDesc *>(kPrefetchBlock);
...@@ -202,7 +301,11 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope, ...@@ -202,7 +301,11 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope,
sleep(5); sleep(5);
// Write to a file of server selected port for python use. // Write to a file of server selected port for python use.
SavePort(rpc_service_); SavePort(rpc_service_);
RunSyncLoop(&executor, program, &recv_scope, prefetch_block); if (sync_mode) {
RunSyncLoop(&executor, program, &recv_scope, prefetch_block);
} else {
RunAsyncLoop(&executor, program, &recv_scope, prefetch_block);
}
} }
class ListenAndServOpMaker : public framework::OpProtoAndCheckerMaker { class ListenAndServOpMaker : public framework::OpProtoAndCheckerMaker {
...@@ -221,6 +324,12 @@ from send_op and send back variables to recv_op. ...@@ -221,6 +324,12 @@ from send_op and send back variables to recv_op.
"IP address to listen on.") "IP address to listen on.")
.SetDefault("127.0.0.1:6164") .SetDefault("127.0.0.1:6164")
.AddCustomChecker([](const std::string &ip) { return !ip.empty(); }); .AddCustomChecker([](const std::string &ip) { return !ip.empty(); });
AddAttr<std::vector<std::string>>(
"grad_to_block_id",
"['param1@GRAD.block0:1', 'param2@GRAD.blockn:2'] "
"a map from grad name to it's optimize block id")
.SetDefault({});
AddAttr<bool>("sync_mode", "if works at sync_mode or not").SetDefault(true);
AddAttr<framework::BlockDesc *>(kOptimizeBlock, AddAttr<framework::BlockDesc *>(kOptimizeBlock,
"BlockID to run on server side."); "BlockID to run on server side.");
AddAttr<framework::BlockDesc *>(kPrefetchBlock, AddAttr<framework::BlockDesc *>(kPrefetchBlock,
......
...@@ -46,6 +46,11 @@ class ListenAndServOp : public framework::OperatorBase { ...@@ -46,6 +46,11 @@ class ListenAndServOp : public framework::OperatorBase {
framework::Scope* recv_scope, framework::Scope* recv_scope,
framework::BlockDesc* prefetch_block) const; framework::BlockDesc* prefetch_block) const;
void RunAsyncLoop(framework::Executor* executor,
framework::ProgramDesc* program,
framework::Scope* recv_scope,
framework::BlockDesc* prefetch_block) const;
void Stop() override; void Stop() override;
void RunImpl(const framework::Scope& scope, void RunImpl(const framework::Scope& scope,
......
...@@ -33,7 +33,7 @@ inline void ReorderInitState(const DeviceContext& ctx, ...@@ -33,7 +33,7 @@ inline void ReorderInitState(const DeviceContext& ctx,
framework::Tensor* dst, bool indexed_src) { framework::Tensor* dst, bool indexed_src) {
math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle; math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
dst->mutable_data<T>(src.dims(), ctx.GetPlace()); dst->mutable_data<T>(src.dims(), ctx.GetPlace());
row_shuffle(ctx, src, index_lod, *dst, indexed_src); row_shuffle(ctx, src, index_lod, dst, indexed_src);
} }
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
...@@ -57,7 +57,7 @@ class LSTMKernel : public framework::OpKernel<T> { ...@@ -57,7 +57,7 @@ class LSTMKernel : public framework::OpKernel<T> {
bool is_reverse = ctx.Attr<bool>("is_reverse"); bool is_reverse = ctx.Attr<bool>("is_reverse");
math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch; math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
auto& device_ctx = ctx.template device_context<DeviceContext>(); auto& device_ctx = ctx.template device_context<DeviceContext>();
to_batch(device_ctx, *input, *batch_gate, true, is_reverse); to_batch(device_ctx, *input, batch_gate, true, is_reverse);
auto in_dims = input->dims(); auto in_dims = input->dims();
int frame_size = static_cast<int>(in_dims[1] / 4); int frame_size = static_cast<int>(in_dims[1] / 4);
...@@ -161,11 +161,11 @@ class LSTMKernel : public framework::OpKernel<T> { ...@@ -161,11 +161,11 @@ class LSTMKernel : public framework::OpKernel<T> {
math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq; math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
batch_hidden.set_lod(batch_gate->lod()); batch_hidden.set_lod(batch_gate->lod());
// restore the output hidden in LoDTensor from the batch hidden // restore the output hidden in LoDTensor from the batch hidden
to_seq(device_ctx, batch_hidden, *hidden_out); to_seq(device_ctx, batch_hidden, hidden_out);
batch_cell.set_lod(batch_gate->lod()); batch_cell.set_lod(batch_gate->lod());
// restore the output cell state in LoDTensor from the batch cell // restore the output cell state in LoDTensor from the batch cell
to_seq(device_ctx, batch_cell, *cell_out); to_seq(device_ctx, batch_cell, cell_out);
} }
}; };
...@@ -257,7 +257,7 @@ class LSTMGradKernel : public framework::OpKernel<T> { ...@@ -257,7 +257,7 @@ class LSTMGradKernel : public framework::OpKernel<T> {
const framework::DDim& dims, framework::LoDTensor& dst) { const framework::DDim& dims, framework::LoDTensor& dst) {
dst.mutable_data<T>(dims, ctx.GetPlace()); dst.mutable_data<T>(dims, ctx.GetPlace());
dst.set_lod(batch_gate->lod()); dst.set_lod(batch_gate->lod());
to_batch(ctx, src, dst, false); to_batch(ctx, src, &dst, false);
}; };
LoDTensor batch_hidden, batch_hidden_g, batch_cell; LoDTensor batch_hidden, batch_hidden_g, batch_cell;
...@@ -351,7 +351,7 @@ class LSTMGradKernel : public framework::OpKernel<T> { ...@@ -351,7 +351,7 @@ class LSTMGradKernel : public framework::OpKernel<T> {
if (in_g) { if (in_g) {
/* backward data */ /* backward data */
in_g->mutable_data<T>(ctx.GetPlace()); in_g->mutable_data<T>(ctx.GetPlace());
to_seq(device_ctx, batch_gate_g, *in_g); to_seq(device_ctx, batch_gate_g, in_g);
} }
if (bias && bias_g) { if (bias && bias_g) {
/* backward bias */ /* backward bias */
......
...@@ -40,7 +40,7 @@ inline void ReorderInitState(const DeviceContext& ctx, ...@@ -40,7 +40,7 @@ inline void ReorderInitState(const DeviceContext& ctx,
framework::Tensor* dst, bool indexed_src) { framework::Tensor* dst, bool indexed_src) {
math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle; math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
dst->mutable_data<T>(src.dims(), ctx.GetPlace()); dst->mutable_data<T>(src.dims(), ctx.GetPlace());
row_shuffle(ctx, src, index, *dst, indexed_src); row_shuffle(ctx, src, index, dst, indexed_src);
} }
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
...@@ -81,7 +81,7 @@ class LSTMPKernel : public framework::OpKernel<T> { ...@@ -81,7 +81,7 @@ class LSTMPKernel : public framework::OpKernel<T> {
bool is_reverse = ctx.Attr<bool>("is_reverse"); bool is_reverse = ctx.Attr<bool>("is_reverse");
math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch; math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
auto& device_ctx = ctx.template device_context<DeviceContext>(); auto& device_ctx = ctx.template device_context<DeviceContext>();
to_batch(device_ctx, *input, *batch_gate, true, is_reverse); to_batch(device_ctx, *input, batch_gate, true, is_reverse);
auto in_dims = input->dims(); auto in_dims = input->dims();
int frame_size = static_cast<int>(in_dims[1] / 4); int frame_size = static_cast<int>(in_dims[1] / 4);
...@@ -208,11 +208,11 @@ class LSTMPKernel : public framework::OpKernel<T> { ...@@ -208,11 +208,11 @@ class LSTMPKernel : public framework::OpKernel<T> {
math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq; math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
batch_proj.set_lod(batch_gate->lod()); batch_proj.set_lod(batch_gate->lod());
// restore the output hidden in LoDTensor from the batch hidden // restore the output hidden in LoDTensor from the batch hidden
to_seq(device_ctx, batch_proj, *proj_out); to_seq(device_ctx, batch_proj, proj_out);
batch_cell.set_lod(batch_gate->lod()); batch_cell.set_lod(batch_gate->lod());
// restore the output cell state in LoDTensor from the batch cell // restore the output cell state in LoDTensor from the batch cell
to_seq(device_ctx, batch_cell, *cell_out); to_seq(device_ctx, batch_cell, cell_out);
} }
}; };
...@@ -332,7 +332,7 @@ class LSTMPGradKernel : public framework::OpKernel<T> { ...@@ -332,7 +332,7 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
const framework::DDim& dims, framework::LoDTensor& dst) { const framework::DDim& dims, framework::LoDTensor& dst) {
dst.mutable_data<T>(dims, ctx.GetPlace()); dst.mutable_data<T>(dims, ctx.GetPlace());
dst.set_lod(batch_gate->lod()); dst.set_lod(batch_gate->lod());
to_batch(ctx, src, dst, false); to_batch(ctx, src, &dst, false);
}; };
LoDTensor batch_hidden_g, batch_proj, batch_proj_g, batch_cell; LoDTensor batch_hidden_g, batch_proj, batch_proj_g, batch_cell;
...@@ -471,7 +471,7 @@ class LSTMPGradKernel : public framework::OpKernel<T> { ...@@ -471,7 +471,7 @@ class LSTMPGradKernel : public framework::OpKernel<T> {
if (in_g) { if (in_g) {
/* backward data */ /* backward data */
in_g->mutable_data<T>(ctx.GetPlace()); in_g->mutable_data<T>(ctx.GetPlace());
to_seq(device_ctx, batch_gate_g, *in_g); to_seq(device_ctx, batch_gate_g, in_g);
} }
if (bias && bias_g) { if (bias && bias_g) {
/* backward bias */ /* backward bias */
......
...@@ -17,17 +17,14 @@ limitations under the License. */ ...@@ -17,17 +17,14 @@ limitations under the License. */
#include <vector> #include <vector>
#include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/tensor_util.h"
using namespace paddle::framework;
using namespace paddle::platform;
template <typename DeviceContext, typename Place> template <typename DeviceContext, typename Place>
void testConcat() { void testConcat() {
Tensor input_a_cpu; paddle::framework::Tensor input_a_cpu;
Tensor input_b_cpu; paddle::framework::Tensor input_b_cpu;
Tensor out_cpu; paddle::framework::Tensor out_cpu;
Tensor input_a; paddle::framework::Tensor input_a;
Tensor input_b; paddle::framework::Tensor input_b;
Tensor out; paddle::framework::Tensor out;
DeviceContext* context = new DeviceContext(Place()); DeviceContext* context = new DeviceContext(Place());
// DeviceContext context(Place()); // DeviceContext context(Place());
...@@ -40,18 +37,18 @@ void testConcat() { ...@@ -40,18 +37,18 @@ void testConcat() {
* output: * output:
* out.shape: [5, 3, 4] * out.shape: [5, 3, 4]
*/ */
auto dim_a = make_ddim({2, 3, 4}); auto dim_a = paddle::framework::make_ddim({2, 3, 4});
auto dim_b = make_ddim({3, 3, 4}); auto dim_b = paddle::framework::make_ddim({3, 3, 4});
auto dim_out = make_ddim({5, 3, 4}); auto dim_out = paddle::framework::make_ddim({5, 3, 4});
input_a.mutable_data<int>(dim_a, Place()); input_a.mutable_data<int>(dim_a, Place());
input_b.mutable_data<int>(dim_b, Place()); input_b.mutable_data<int>(dim_b, Place());
out.mutable_data<int>(dim_out, Place()); out.mutable_data<int>(dim_out, Place());
if (paddle::platform::is_gpu_place(Place())) { if (paddle::platform::is_gpu_place(Place())) {
input_a_cpu.mutable_data<int>(dim_a, CPUPlace()); input_a_cpu.mutable_data<int>(dim_a, paddle::platform::CPUPlace());
input_b_cpu.mutable_data<int>(dim_b, CPUPlace()); input_b_cpu.mutable_data<int>(dim_b, paddle::platform::CPUPlace());
out_cpu.mutable_data<int>(dim_out, CPUPlace()); out_cpu.mutable_data<int>(dim_out, paddle::platform::CPUPlace());
} }
int* a_ptr; int* a_ptr;
...@@ -72,11 +69,11 @@ void testConcat() { ...@@ -72,11 +69,11 @@ void testConcat() {
} }
if (paddle::platform::is_gpu_place(Place())) { if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(input_a_cpu, Place(), *context, &input_a); paddle::framework::TensorCopy(input_a_cpu, Place(), *context, &input_a);
TensorCopy(input_b_cpu, Place(), *context, &input_b); paddle::framework::TensorCopy(input_b_cpu, Place(), *context, &input_b);
} }
std::vector<Tensor> input; std::vector<paddle::framework::Tensor> input;
input.push_back(input_a); input.push_back(input_a);
input.push_back(input_b); input.push_back(input_b);
...@@ -89,7 +86,8 @@ void testConcat() { ...@@ -89,7 +86,8 @@ void testConcat() {
int* out_ptr; int* out_ptr;
if (paddle::platform::is_gpu_place(Place())) { if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(out, CPUPlace(), *context, &out_cpu); paddle::framework::TensorCopy(out, paddle::platform::CPUPlace(), *context,
&out_cpu);
out_ptr = out_cpu.data<int>(); out_ptr = out_cpu.data<int>();
} else { } else {
out_ptr = out.data<int>(); out_ptr = out.data<int>();
...@@ -115,9 +113,9 @@ void testConcat() { ...@@ -115,9 +113,9 @@ void testConcat() {
* output: * output:
* out.shape: [2, 7, 4] * out.shape: [2, 7, 4]
*/ */
dim_a = make_ddim({2, 3, 4}); dim_a = paddle::framework::make_ddim({2, 3, 4});
dim_b = make_ddim({2, 4, 4}); dim_b = paddle::framework::make_ddim({2, 4, 4});
dim_out = make_ddim({2, 7, 4}); dim_out = paddle::framework::make_ddim({2, 7, 4});
input_a.Resize(dim_a); input_a.Resize(dim_a);
input_b.Resize(dim_b); input_b.Resize(dim_b);
...@@ -144,8 +142,8 @@ void testConcat() { ...@@ -144,8 +142,8 @@ void testConcat() {
} }
if (paddle::platform::is_gpu_place(Place())) { if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(input_a_cpu, Place(), *context, &input_a); paddle::framework::TensorCopy(input_a_cpu, Place(), *context, &input_a);
TensorCopy(input_b_cpu, Place(), *context, &input_b); paddle::framework::TensorCopy(input_b_cpu, Place(), *context, &input_b);
} }
input.clear(); input.clear();
...@@ -159,7 +157,8 @@ void testConcat() { ...@@ -159,7 +157,8 @@ void testConcat() {
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b); PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
if (paddle::platform::is_gpu_place(Place())) { if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(out, CPUPlace(), *context, &out_cpu); paddle::framework::TensorCopy(out, paddle::platform::CPUPlace(), *context,
&out_cpu);
out_ptr = out_cpu.data<int>(); out_ptr = out_cpu.data<int>();
} else { } else {
out_ptr = out.data<int>(); out_ptr = out.data<int>();
...@@ -187,9 +186,9 @@ void testConcat() { ...@@ -187,9 +186,9 @@ void testConcat() {
* output: * output:
* out.shape: [2, 3, 9] * out.shape: [2, 3, 9]
*/ */
dim_a = make_ddim({2, 3, 4}); dim_a = paddle::framework::make_ddim({2, 3, 4});
dim_b = make_ddim({2, 3, 5}); dim_b = paddle::framework::make_ddim({2, 3, 5});
dim_out = make_ddim({2, 3, 9}); dim_out = paddle::framework::make_ddim({2, 3, 9});
input_a.Resize(dim_a); input_a.Resize(dim_a);
input_b.Resize(dim_b); input_b.Resize(dim_b);
...@@ -216,8 +215,8 @@ void testConcat() { ...@@ -216,8 +215,8 @@ void testConcat() {
} }
if (paddle::platform::is_gpu_place(Place())) { if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(input_a_cpu, Place(), *context, &input_a); paddle::framework::TensorCopy(input_a_cpu, Place(), *context, &input_a);
TensorCopy(input_b_cpu, Place(), *context, &input_b); paddle::framework::TensorCopy(input_b_cpu, Place(), *context, &input_b);
} }
input.clear(); input.clear();
...@@ -231,7 +230,8 @@ void testConcat() { ...@@ -231,7 +230,8 @@ void testConcat() {
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b); PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
if (paddle::platform::is_gpu_place(Place())) { if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(out, CPUPlace(), *context, &out_cpu); paddle::framework::TensorCopy(out, paddle::platform::CPUPlace(), *context,
&out_cpu);
out_ptr = out_cpu.data<int>(); out_ptr = out_cpu.data<int>();
} else { } else {
out_ptr = out.data<int>(); out_ptr = out.data<int>();
...@@ -261,9 +261,9 @@ void testConcat() { ...@@ -261,9 +261,9 @@ void testConcat() {
* output: * output:
* out.shape: [2, 6, 4] * out.shape: [2, 6, 4]
*/ */
dim_a = make_ddim({2, 3, 4}); dim_a = paddle::framework::make_ddim({2, 3, 4});
dim_b = make_ddim({2, 3, 4}); dim_b = paddle::framework::make_ddim({2, 3, 4});
dim_out = make_ddim({2, 6, 4}); dim_out = paddle::framework::make_ddim({2, 6, 4});
input_a.Resize(dim_a); input_a.Resize(dim_a);
input_b.Resize(dim_b); input_b.Resize(dim_b);
...@@ -290,8 +290,8 @@ void testConcat() { ...@@ -290,8 +290,8 @@ void testConcat() {
} }
if (paddle::platform::is_gpu_place(Place())) { if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(input_a_cpu, Place(), *context, &input_a); paddle::framework::TensorCopy(input_a_cpu, Place(), *context, &input_a);
TensorCopy(input_b_cpu, Place(), *context, &input_b); paddle::framework::TensorCopy(input_b_cpu, Place(), *context, &input_b);
} }
input.clear(); input.clear();
...@@ -305,7 +305,8 @@ void testConcat() { ...@@ -305,7 +305,8 @@ void testConcat() {
PADDLE_ENFORCE_EQ(input_b.dims(), dim_b); PADDLE_ENFORCE_EQ(input_b.dims(), dim_b);
if (paddle::platform::is_gpu_place(Place())) { if (paddle::platform::is_gpu_place(Place())) {
TensorCopy(out, CPUPlace(), *context, &out_cpu); paddle::framework::TensorCopy(out, paddle::platform::CPUPlace(), *context,
&out_cpu);
out_ptr = out_cpu.data<int>(); out_ptr = out_cpu.data<int>();
} else { } else {
out_ptr = out.data<int>(); out_ptr = out.data<int>();
......
...@@ -14,6 +14,8 @@ limitations under the License. */ ...@@ -14,6 +14,8 @@ limitations under the License. */
#pragma once #pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/math/im2col.h" #include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
......
...@@ -108,7 +108,9 @@ class CrossEntropyFunctor<platform::CUDADeviceContext, T> { ...@@ -108,7 +108,9 @@ class CrossEntropyFunctor<platform::CUDADeviceContext, T> {
if (softLabel) { if (softLabel) {
const T* label_data = labels->data<T>(); const T* label_data = labels->data<T>();
int block = class_num > 512 ? 512 : pow(2, int(std::log2(class_num))); int block = class_num > 512
? 512
: pow(2, static_cast<int>(std::log2(class_num)));
SoftCrossEntropyKernel<T><<< SoftCrossEntropyKernel<T><<<
batch_size, block, block * sizeof(T), batch_size, block, block * sizeof(T),
......
...@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <vector>
#include "paddle/fluid/operators/math/depthwise_conv.h" #include "paddle/fluid/operators/math/depthwise_conv.h"
#include "paddle/fluid/platform/cuda_helper.h" #include "paddle/fluid/platform/cuda_helper.h"
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <vector>
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/hostdevice.h" #include "paddle/fluid/platform/hostdevice.h"
......
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once #pragma once
#include <math.h> #include <math.h>
#include <string>
#include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/hostdevice.h" #include "paddle/fluid/platform/hostdevice.h"
......
...@@ -13,13 +13,13 @@ See the License for the specific language governing permissions and ...@@ -13,13 +13,13 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <type_traits>
#include "paddle/fluid/operators/math/detail/activation_functions.h" #include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h" #include "paddle/fluid/operators/math/lstm_compute.h"
#include "paddle/fluid/platform/cuda_helper.h" #include "paddle/fluid/platform/cuda_helper.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
#include <type_traits>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
namespace math { namespace math {
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/math/im2col.h" #include "paddle/fluid/operators/math/im2col.h"
#include <vector>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <algorithm>
#include <vector>
#include "paddle/fluid/operators/math/im2col.h" #include "paddle/fluid/operators/math/im2col.h"
#include "paddle/fluid/platform/cuda_helper.h" #include "paddle/fluid/platform/cuda_helper.h"
......
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once #pragma once
#include <vector>
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
......
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/math/im2col.h" #include "paddle/fluid/operators/math/im2col.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <vector>
template <typename DeviceContext, typename Place> template <typename DeviceContext, typename Place>
void testIm2col() { void testIm2col() {
...@@ -62,7 +63,7 @@ void testIm2col() { ...@@ -62,7 +63,7 @@ void testIm2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
input = input_tmp; input = input_tmp;
} else { } else {
TensorCopy(input_tmp, *place, *context, &input); TensorCopySync(input_tmp, *place, &input);
} }
output_cfo.mutable_data<float>( output_cfo.mutable_data<float>(
{1, filter_size, filter_size, output_height, output_width}, *place); {1, filter_size, filter_size, output_height, output_width}, *place);
...@@ -87,7 +88,7 @@ void testIm2col() { ...@@ -87,7 +88,7 @@ void testIm2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
out_cfo_ptr = output_cfo.data<float>(); out_cfo_ptr = output_cfo.data<float>();
} else { } else {
TensorCopy(output_cfo, paddle::platform::CPUPlace(), *context, &output_tmp); TensorCopySync(output_cfo, paddle::platform::CPUPlace(), &output_tmp);
out_cfo_ptr = output_tmp.data<float>(); out_cfo_ptr = output_tmp.data<float>();
} }
for (int i = 0; i < 6; ++i) { for (int i = 0; i < 6; ++i) {
...@@ -98,7 +99,7 @@ void testIm2col() { ...@@ -98,7 +99,7 @@ void testIm2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
out_ocf_ptr = output_ocf.data<float>(); out_ocf_ptr = output_ocf.data<float>();
} else { } else {
TensorCopy(output_ocf, paddle::platform::CPUPlace(), *context, &output_tmp); TensorCopySync(output_ocf, paddle::platform::CPUPlace(), &output_tmp);
out_ocf_ptr = output_tmp.data<float>(); out_ocf_ptr = output_tmp.data<float>();
} }
...@@ -119,7 +120,7 @@ void testIm2col() { ...@@ -119,7 +120,7 @@ void testIm2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
input = input_tmp; input = input_tmp;
} else { } else {
TensorCopy(input_tmp, *place, *context, &input); TensorCopySync(input_tmp, *place, &input);
} }
col2im(*context, output_cfo, dilation, stride, padding, &input); col2im(*context, output_cfo, dilation, stride, padding, &input);
...@@ -128,7 +129,7 @@ void testIm2col() { ...@@ -128,7 +129,7 @@ void testIm2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
in_ptr = input.data<float>(); in_ptr = input.data<float>();
} else { } else {
TensorCopy(input, paddle::platform::CPUPlace(), *context, &input_tmp); TensorCopySync(input, paddle::platform::CPUPlace(), &input_tmp);
in_ptr = input_tmp.data<float>(); in_ptr = input_tmp.data<float>();
} }
for (int i = 0; i < 6; ++i) { for (int i = 0; i < 6; ++i) {
...@@ -140,7 +141,7 @@ void testIm2col() { ...@@ -140,7 +141,7 @@ void testIm2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
input = input_tmp; input = input_tmp;
} else { } else {
TensorCopy(input_tmp, *place, *context, &input); TensorCopySync(input_tmp, *place, &input);
} }
col2im_ocf(*context, output_ocf, dilation, stride, padding, &input); col2im_ocf(*context, output_ocf, dilation, stride, padding, &input);
...@@ -148,7 +149,7 @@ void testIm2col() { ...@@ -148,7 +149,7 @@ void testIm2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
in_ptr = input.data<float>(); in_ptr = input.data<float>();
} else { } else {
TensorCopy(input, paddle::platform::CPUPlace(), *context, &input_tmp); TensorCopySync(input, paddle::platform::CPUPlace(), &input_tmp);
in_ptr = input_tmp.data<float>(); in_ptr = input_tmp.data<float>();
} }
for (int i = 0; i < 6; ++i) { for (int i = 0; i < 6; ++i) {
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <vector>
#include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
......
...@@ -40,15 +40,15 @@ TEST(math_function, notrans_mul_trans_fp32) { ...@@ -40,15 +40,15 @@ TEST(math_function, notrans_mul_trans_fp32) {
float arr[6] = {0, 1, 2, 3, 4, 5}; float arr[6] = {0, 1, 2, 3, 4, 5};
memcpy(input1_ptr, arr, 6 * sizeof(float)); memcpy(input1_ptr, arr, 6 * sizeof(float));
TensorCopy(input1, gpu_place, context, &input1_gpu); TensorCopySync(input1, gpu_place, &input1_gpu);
TensorCopy(input1, gpu_place, context, &input2_gpu); TensorCopySync(input1, gpu_place, &input2_gpu);
out_gpu.mutable_data<float>({2, 2}, gpu_place); out_gpu.mutable_data<float>({2, 2}, gpu_place);
paddle::operators::math::matmul<CUDADeviceContext, float>( paddle::operators::math::matmul<CUDADeviceContext, float>(
context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0); context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0);
TensorCopy(out_gpu, cpu_place, context, &out); TensorCopySync(out_gpu, cpu_place, &out);
float* out_ptr = out.data<float>(); float* out_ptr = out.data<float>();
context.Wait(); context.Wait();
...@@ -80,8 +80,8 @@ TEST(math_function, notrans_mul_trans_fp16) { ...@@ -80,8 +80,8 @@ TEST(math_function, notrans_mul_trans_fp16) {
float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place); float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5}); fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});
TensorCopy(input1, gpu_place, context, &input1_gpu); TensorCopySync(input1, gpu_place, &input1_gpu);
TensorCopy(input1, gpu_place, context, &input2_gpu); TensorCopySync(input1, gpu_place, &input2_gpu);
out_gpu.mutable_data<float16>({2, 2}, gpu_place); out_gpu.mutable_data<float16>({2, 2}, gpu_place);
...@@ -89,7 +89,7 @@ TEST(math_function, notrans_mul_trans_fp16) { ...@@ -89,7 +89,7 @@ TEST(math_function, notrans_mul_trans_fp16) {
context, input1_gpu, false, input2_gpu, true, float16(1), &out_gpu, context, input1_gpu, false, input2_gpu, true, float16(1), &out_gpu,
float16(0)); float16(0));
TensorCopy(out_gpu, cpu_place, context, &out); TensorCopySync(out_gpu, cpu_place, &out);
float16* out_ptr = out.data<float16>(); float16* out_ptr = out.data<float16>();
context.Wait(); context.Wait();
...@@ -117,15 +117,15 @@ TEST(math_function, trans_mul_notrans_fp32) { ...@@ -117,15 +117,15 @@ TEST(math_function, trans_mul_notrans_fp32) {
float arr[6] = {0, 1, 2, 3, 4, 5}; float arr[6] = {0, 1, 2, 3, 4, 5};
memcpy(input1_ptr, arr, 6 * sizeof(float)); memcpy(input1_ptr, arr, 6 * sizeof(float));
TensorCopy(input1, gpu_place, context, &input1_gpu); TensorCopySync(input1, gpu_place, &input1_gpu);
TensorCopy(input1, gpu_place, context, &input2_gpu); TensorCopySync(input1, gpu_place, &input2_gpu);
out_gpu.mutable_data<float>({3, 3}, gpu_place); out_gpu.mutable_data<float>({3, 3}, gpu_place);
paddle::operators::math::matmul<paddle::platform::CUDADeviceContext, float>( paddle::operators::math::matmul<paddle::platform::CUDADeviceContext, float>(
context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0); context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0);
TensorCopy(out_gpu, cpu_place, context, &out); TensorCopySync(out_gpu, cpu_place, &out);
float* out_ptr = out.data<float>(); float* out_ptr = out.data<float>();
context.Wait(); context.Wait();
...@@ -162,8 +162,8 @@ TEST(math_function, trans_mul_notrans_fp16) { ...@@ -162,8 +162,8 @@ TEST(math_function, trans_mul_notrans_fp16) {
float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place); float16* input1_ptr = input1.mutable_data<float16>({2, 3}, cpu_place);
fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5}); fill_fp16_data(input1_ptr, input1.numel(), {0, 1, 2, 3, 4, 5});
TensorCopy(input1, gpu_place, context, &input1_gpu); TensorCopySync(input1, gpu_place, &input1_gpu);
TensorCopy(input1, gpu_place, context, &input2_gpu); TensorCopySync(input1, gpu_place, &input2_gpu);
out_gpu.mutable_data<float16>({3, 3}, gpu_place); out_gpu.mutable_data<float16>({3, 3}, gpu_place);
...@@ -171,7 +171,7 @@ TEST(math_function, trans_mul_notrans_fp16) { ...@@ -171,7 +171,7 @@ TEST(math_function, trans_mul_notrans_fp16) {
context, input1_gpu, true, input2_gpu, false, float16(1), &out_gpu, context, input1_gpu, true, input2_gpu, false, float16(1), &out_gpu,
float16(0)); float16(0));
TensorCopy(out_gpu, cpu_place, context, &out); TensorCopySync(out_gpu, cpu_place, &out);
float16* out_ptr = out.data<float16>(); float16* out_ptr = out.data<float16>();
context.Wait(); context.Wait();
...@@ -214,9 +214,9 @@ TEST(math_function, gemm_notrans_cublas_fp32) { ...@@ -214,9 +214,9 @@ TEST(math_function, gemm_notrans_cublas_fp32) {
float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7}; float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
memcpy(input3_ptr, arr3, 8 * sizeof(float)); memcpy(input3_ptr, arr3, 8 * sizeof(float));
TensorCopy(input1, gpu_place, context, &input1_gpu); TensorCopySync(input1, gpu_place, &input1_gpu);
TensorCopy(input2, gpu_place, context, &input2_gpu); TensorCopySync(input2, gpu_place, &input2_gpu);
TensorCopy(input3, gpu_place, context, &input3_gpu); TensorCopySync(input3, gpu_place, &input3_gpu);
float* a = input1_gpu.data<float>(); float* a = input1_gpu.data<float>();
float* b = input2_gpu.data<float>(); float* b = input2_gpu.data<float>();
float* c = input3_gpu.mutable_data<float>(gpu_place); float* c = input3_gpu.mutable_data<float>(gpu_place);
...@@ -224,7 +224,7 @@ TEST(math_function, gemm_notrans_cublas_fp32) { ...@@ -224,7 +224,7 @@ TEST(math_function, gemm_notrans_cublas_fp32) {
paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float>( paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float>(
context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4); context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4);
TensorCopy(input3_gpu, cpu_place, context, &input3); TensorCopySync(input3_gpu, cpu_place, &input3);
// numpy code: // numpy code:
// a = np.arange(6).reshape(2, 3) // a = np.arange(6).reshape(2, 3)
...@@ -274,9 +274,9 @@ TEST(math_function, gemm_notrans_cublas_fp16) { ...@@ -274,9 +274,9 @@ TEST(math_function, gemm_notrans_cublas_fp16) {
float16* input3_ptr = input3.mutable_data<float16>({2, 4}, cpu_place); float16* input3_ptr = input3.mutable_data<float16>({2, 4}, cpu_place);
fill_fp16_data(input3_ptr, input3.numel(), {0, 1, 2, 3, 4, 5, 6, 7}); fill_fp16_data(input3_ptr, input3.numel(), {0, 1, 2, 3, 4, 5, 6, 7});
TensorCopy(input1, gpu_place, context, &input1_gpu); TensorCopySync(input1, gpu_place, &input1_gpu);
TensorCopy(input2, gpu_place, context, &input2_gpu); TensorCopySync(input2, gpu_place, &input2_gpu);
TensorCopy(input3, gpu_place, context, &input3_gpu); TensorCopySync(input3, gpu_place, &input3_gpu);
float16* a = input1_gpu.data<float16>(); float16* a = input1_gpu.data<float16>();
float16* b = input2_gpu.data<float16>(); float16* b = input2_gpu.data<float16>();
float16* c = input3_gpu.mutable_data<float16>(gpu_place); float16* c = input3_gpu.mutable_data<float16>(gpu_place);
...@@ -285,7 +285,7 @@ TEST(math_function, gemm_notrans_cublas_fp16) { ...@@ -285,7 +285,7 @@ TEST(math_function, gemm_notrans_cublas_fp16) {
context, false, false, m, n, k, float16(1), a, 3, b + 1, 4, float16(1), context, false, false, m, n, k, float16(1), a, 3, b + 1, 4, float16(1),
c + 1, 4); c + 1, 4);
TensorCopy(input3_gpu, cpu_place, context, &input3); TensorCopySync(input3_gpu, cpu_place, &input3);
// numpy code: // numpy code:
// a = np.arange(6).reshape(2, 3) // a = np.arange(6).reshape(2, 3)
...@@ -332,9 +332,9 @@ TEST(math_function, gemm_trans_cublas_fp32) { ...@@ -332,9 +332,9 @@ TEST(math_function, gemm_trans_cublas_fp32) {
float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7}; float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
memcpy(input3_ptr, arr3, 8 * sizeof(float)); memcpy(input3_ptr, arr3, 8 * sizeof(float));
TensorCopy(input1, gpu_place, context, &input1_gpu); TensorCopySync(input1, gpu_place, &input1_gpu);
TensorCopy(input2, gpu_place, context, &input2_gpu); TensorCopySync(input2, gpu_place, &input2_gpu);
TensorCopy(input3, gpu_place, context, &input3_gpu); TensorCopySync(input3, gpu_place, &input3_gpu);
float* a = input1_gpu.data<float>(); float* a = input1_gpu.data<float>();
float* b = input2_gpu.data<float>(); float* b = input2_gpu.data<float>();
float* c = input3_gpu.mutable_data<float>(gpu_place); float* c = input3_gpu.mutable_data<float>(gpu_place);
...@@ -342,7 +342,7 @@ TEST(math_function, gemm_trans_cublas_fp32) { ...@@ -342,7 +342,7 @@ TEST(math_function, gemm_trans_cublas_fp32) {
paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float>( paddle::operators::math::gemm<paddle::platform::CUDADeviceContext, float>(
context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4); context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4);
TensorCopy(input3_gpu, cpu_place, context, &input3); TensorCopySync(input3_gpu, cpu_place, &input3);
context.Wait(); context.Wait();
EXPECT_EQ(input3_ptr[0], 0); EXPECT_EQ(input3_ptr[0], 0);
...@@ -386,9 +386,9 @@ TEST(math_function, gemm_trans_cublas_fp16) { ...@@ -386,9 +386,9 @@ TEST(math_function, gemm_trans_cublas_fp16) {
float16* input3_ptr = input3.mutable_data<float16>({2, 4}, cpu_place); float16* input3_ptr = input3.mutable_data<float16>({2, 4}, cpu_place);
fill_fp16_data(input3_ptr, input3.numel(), {0, 1, 2, 3, 4, 5, 6, 7}); fill_fp16_data(input3_ptr, input3.numel(), {0, 1, 2, 3, 4, 5, 6, 7});
TensorCopy(input1, gpu_place, context, &input1_gpu); TensorCopySync(input1, gpu_place, &input1_gpu);
TensorCopy(input2, gpu_place, context, &input2_gpu); TensorCopySync(input2, gpu_place, &input2_gpu);
TensorCopy(input3, gpu_place, context, &input3_gpu); TensorCopySync(input3, gpu_place, &input3_gpu);
float16* a = input1_gpu.data<float16>(); float16* a = input1_gpu.data<float16>();
float16* b = input2_gpu.data<float16>(); float16* b = input2_gpu.data<float16>();
float16* c = input3_gpu.mutable_data<float16>(gpu_place); float16* c = input3_gpu.mutable_data<float16>(gpu_place);
...@@ -397,7 +397,7 @@ TEST(math_function, gemm_trans_cublas_fp16) { ...@@ -397,7 +397,7 @@ TEST(math_function, gemm_trans_cublas_fp16) {
context, false, true, m, n, k, float16(1), a, 3, b + 3, 3, float16(1), context, false, true, m, n, k, float16(1), a, 3, b + 3, 3, float16(1),
c + 1, 4); c + 1, 4);
TensorCopy(input3_gpu, cpu_place, context, &input3); TensorCopySync(input3_gpu, cpu_place, &input3);
context.Wait(); context.Wait();
EXPECT_EQ(static_cast<float>(input3_ptr[0]), 0); EXPECT_EQ(static_cast<float>(input3_ptr[0]), 0);
...@@ -441,14 +441,14 @@ void GemvTest(int m, int n, bool trans) { ...@@ -441,14 +441,14 @@ void GemvTest(int m, int n, bool trans) {
data_b[i] = static_cast<T>(i); data_b[i] = static_cast<T>(i);
} }
TensorCopy(mat_a, gpu_place, context, &g_mat_a); TensorCopySync(mat_a, gpu_place, &g_mat_a);
TensorCopy(vec_b, gpu_place, context, &g_vec_b); TensorCopySync(vec_b, gpu_place, &g_vec_b);
paddle::operators::math::gemv<CUDADeviceContext, T>( paddle::operators::math::gemv<CUDADeviceContext, T>(
context, trans, static_cast<int>(m), static_cast<int>(n), 1., g_data_a, context, trans, static_cast<int>(m), static_cast<int>(n), 1., g_data_a,
g_data_b, 0., g_data_c); g_data_b, 0., g_data_c);
TensorCopy(g_vec_c, cpu_place, context, &vec_c); TensorCopySync(g_vec_c, cpu_place, &vec_c);
if (!trans) { if (!trans) {
for (int i = 0; i < m; ++i) { for (int i = 0; i < m; ++i) {
......
...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
namespace paddle { namespace paddle {
......
...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "sampler.h" #include "paddle/fluid/operators/math/sampler.h"
namespace paddle { namespace paddle {
namespace random { namespace random {
......
...@@ -13,9 +13,9 @@ See the License for the specific language governing permissions and ...@@ -13,9 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <cstdint>
#include <memory> #include <memory>
#include <random> #include <random>
typedef long int64;
namespace paddle { namespace paddle {
namespace operators { namespace operators {
namespace math { namespace math {
...@@ -27,25 +27,25 @@ namespace math { ...@@ -27,25 +27,25 @@ namespace math {
*/ */
class Sampler { class Sampler {
public: public:
explicit Sampler(int64 range) : range_(range) { explicit Sampler(int64_t range) : range_(range) {
PADDLE_ENFORCE_GT(range, 0); PADDLE_ENFORCE_GT(range, 0);
std::random_device r; std::random_device r;
seed_ = r(); seed_ = r();
} }
explicit Sampler(int64 range, unsigned int seed) explicit Sampler(int64_t range, unsigned int seed)
: range_(range), seed_(seed) { : range_(range), seed_(seed) {
PADDLE_ENFORCE_GT(range, 0); PADDLE_ENFORCE_GT(range, 0);
} }
virtual ~Sampler(); virtual ~Sampler();
// Sample a single value // Sample a single value
virtual int64 Sample() const = 0; virtual int64_t Sample() const = 0;
// The probability that a single call to Sample() returns the given value. // The probability that a single call to Sample() returns the given value.
virtual float Probability(int64 value) const = 0; virtual float Probability(int64_t value) const = 0;
int64 range() { return range_; }; int64 range() { return range_; }
protected: protected:
const int64 range_; const int64_t range_;
unsigned int seed_; unsigned int seed_;
}; };
...@@ -56,15 +56,15 @@ class Sampler { ...@@ -56,15 +56,15 @@ class Sampler {
*/ */
class UniformSampler : public Sampler { class UniformSampler : public Sampler {
public: public:
explicit UniformSampler(int64 range); explicit UniformSampler(int64_t range);
explicit UniformSampler(int64 range, unsigned int seed); explicit UniformSampler(int64_t range, unsigned int seed);
~UniformSampler() override {} ~UniformSampler() override {}
int64 Sample() const override; int64 Sample() const override;
float Probability(int64 value) const override; float Probability(int64_t value) const override;
private: private:
const float inv_range_; const float inv_range_;
...@@ -79,15 +79,15 @@ class UniformSampler : public Sampler { ...@@ -79,15 +79,15 @@ class UniformSampler : public Sampler {
*/ */
class LogUniformSampler : public Sampler { class LogUniformSampler : public Sampler {
public: public:
explicit LogUniformSampler(int64 range); explicit LogUniformSampler(int64_t range);
explicit LogUniformSampler(int64 range, unsigned int seed); explicit LogUniformSampler(int64_t range, unsigned int seed);
~LogUniformSampler() override {} ~LogUniformSampler() override {}
int64 Sample() const override; int64 Sample() const override;
float Probability(int64 value) const override; float Probability(int64_t value) const override;
private: private:
const float log_range_; const float log_range_;
...@@ -95,6 +95,6 @@ class LogUniformSampler : public Sampler { ...@@ -95,6 +95,6 @@ class LogUniformSampler : public Sampler {
std::shared_ptr<std::uniform_real_distribution<>> dist_; std::shared_ptr<std::uniform_real_distribution<>> dist_;
}; };
} // math } // namespace math
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <set> #include <set>
#include <vector>
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h" #include "paddle/fluid/operators/math/selected_rows_functor.h"
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <set> #include <set>
#include <vector>
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h" #include "paddle/fluid/operators/math/selected_rows_functor.h"
......
...@@ -13,41 +13,50 @@ See the License for the specific language governing permissions and ...@@ -13,41 +13,50 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/math/selected_rows_functor.h" #include "paddle/fluid/operators/math/selected_rows_functor.h"
#include <vector>
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
TEST(selected_rows_functor, cpu_add) { TEST(selected_rows_functor, cpu_add) {
using namespace paddle::framework; paddle::platform::CPUPlace cpu_place;
using namespace paddle::platform; paddle::platform::CPUDeviceContext ctx(cpu_place);
using namespace paddle::operators::math; paddle::operators::math::SetConstant<paddle::platform::CPUDeviceContext,
float>
CPUPlace cpu_place; functor;
CPUDeviceContext ctx(cpu_place);
SetConstant<CPUDeviceContext, float> functor;
int64_t height = 10; int64_t height = 10;
int64_t row_numel = 10; int64_t row_numel = 10;
std::vector<int64_t> rows1{0, 4, 7}; std::vector<int64_t> rows1{0, 4, 7};
std::unique_ptr<SelectedRows> selected_rows1{new SelectedRows(rows1, height)}; std::unique_ptr<paddle::framework::SelectedRows> selected_rows1{
new paddle::framework::SelectedRows(rows1, height)};
auto* in1_value = selected_rows1->mutable_value(); auto* in1_value = selected_rows1->mutable_value();
in1_value->mutable_data<float>( in1_value->mutable_data<float>(
make_ddim({static_cast<int64_t>(rows1.size()), row_numel}), cpu_place); paddle::framework::make_ddim(
{static_cast<int64_t>(rows1.size()), row_numel}),
cpu_place);
functor(ctx, in1_value, 1.0); functor(ctx, in1_value, 1.0);
std::vector<int64_t> rows2{0, 5, 7, 9}; std::vector<int64_t> rows2{0, 5, 7, 9};
std::unique_ptr<SelectedRows> selected_rows2{new SelectedRows(rows2, height)}; std::unique_ptr<paddle::framework::SelectedRows> selected_rows2{
new paddle::framework::SelectedRows(rows2, height)};
auto* in2_value = selected_rows2->mutable_value(); auto* in2_value = selected_rows2->mutable_value();
in2_value->mutable_data<float>( in2_value->mutable_data<float>(
make_ddim({static_cast<int64_t>(rows2.size()), row_numel}), cpu_place); paddle::framework::make_ddim(
{static_cast<int64_t>(rows2.size()), row_numel}),
cpu_place);
functor(ctx, in2_value, 2.0); functor(ctx, in2_value, 2.0);
std::unique_ptr<SelectedRows> output{new SelectedRows()}; std::unique_ptr<paddle::framework::SelectedRows> output{
new paddle::framework::SelectedRows()};
auto* out_value = output->mutable_value(); auto* out_value = output->mutable_value();
// simplely concat two SelectedRows // simplely concat two SelectedRows
out_value->mutable_data<float>(make_ddim({7, 10}), cpu_place); out_value->mutable_data<float>(paddle::framework::make_ddim({7, 10}),
cpu_place);
SelectedRowsAdd<CPUDeviceContext, float> add_functor; paddle::operators::math::SelectedRowsAdd<paddle::platform::CPUDeviceContext,
float>
add_functor;
add_functor(ctx, *selected_rows1, *selected_rows2, output.get()); add_functor(ctx, *selected_rows1, *selected_rows2, output.get());
auto out_height = output->height(); auto out_height = output->height();
...@@ -78,14 +87,20 @@ TEST(selected_rows_functor, cpu_add) { ...@@ -78,14 +87,20 @@ TEST(selected_rows_functor, cpu_add) {
EXPECT_EQ(out_data[5 * row_numel + 7], 2.0); EXPECT_EQ(out_data[5 * row_numel + 7], 2.0);
EXPECT_EQ(out_data[6 * row_numel + 9], 2.0); EXPECT_EQ(out_data[6 * row_numel + 9], 2.0);
std::unique_ptr<Tensor> tensor1{new Tensor()}; std::unique_ptr<paddle::framework::Tensor> tensor1{
tensor1->mutable_data<float>(make_ddim({height, row_numel}), cpu_place); new paddle::framework::Tensor()};
tensor1->mutable_data<float>(
paddle::framework::make_ddim({height, row_numel}), cpu_place);
functor(ctx, tensor1.get(), 3.0); functor(ctx, tensor1.get(), 3.0);
std::unique_ptr<Tensor> tensor2{new Tensor()}; std::unique_ptr<paddle::framework::Tensor> tensor2{
tensor2->mutable_data<float>(make_ddim({height, row_numel}), cpu_place); new paddle::framework::Tensor()};
tensor2->mutable_data<float>(
paddle::framework::make_ddim({height, row_numel}), cpu_place);
SelectedRowsAddTensor<CPUDeviceContext, float> add_tensor_functor; paddle::operators::math::SelectedRowsAddTensor<
paddle::platform::CPUDeviceContext, float>
add_tensor_functor;
add_tensor_functor(ctx, *output, *tensor1, tensor2.get()); add_tensor_functor(ctx, *output, *tensor1, tensor2.get());
auto* tensor2_data = tensor2->data<float>(); auto* tensor2_data = tensor2->data<float>();
...@@ -106,38 +121,46 @@ TEST(selected_rows_functor, cpu_add) { ...@@ -106,38 +121,46 @@ TEST(selected_rows_functor, cpu_add) {
} }
TEST(selected_rows_functor, cpu_add_to) { TEST(selected_rows_functor, cpu_add_to) {
using namespace paddle::framework; paddle::platform::CPUPlace cpu_place;
using namespace paddle::platform; paddle::platform::CPUDeviceContext ctx(cpu_place);
using namespace paddle::operators::math; paddle::operators::math::SetConstant<paddle::platform::CPUDeviceContext,
float>
CPUPlace cpu_place; functor;
CPUDeviceContext ctx(cpu_place);
SetConstant<CPUDeviceContext, float> functor;
int64_t height = 10; int64_t height = 10;
int64_t row_numel = 10; int64_t row_numel = 10;
std::vector<int64_t> rows1{0, 4, 7}; std::vector<int64_t> rows1{0, 4, 7};
std::unique_ptr<SelectedRows> selected_rows1{new SelectedRows(rows1, height)}; std::unique_ptr<paddle::framework::SelectedRows> selected_rows1{
new paddle::framework::SelectedRows(rows1, height)};
auto* in1_value = selected_rows1->mutable_value(); auto* in1_value = selected_rows1->mutable_value();
in1_value->mutable_data<float>( in1_value->mutable_data<float>(
make_ddim({static_cast<int64_t>(rows1.size()), row_numel}), cpu_place); paddle::framework::make_ddim(
{static_cast<int64_t>(rows1.size()), row_numel}),
cpu_place);
functor(ctx, in1_value, 1.0); functor(ctx, in1_value, 1.0);
std::vector<int64_t> rows2{0, 5, 7, 9}; std::vector<int64_t> rows2{0, 5, 7, 9};
std::unique_ptr<SelectedRows> selected_rows2{new SelectedRows(rows2, height)}; std::unique_ptr<paddle::framework::SelectedRows> selected_rows2{
new paddle::framework::SelectedRows(rows2, height)};
auto* in2_value = selected_rows2->mutable_value(); auto* in2_value = selected_rows2->mutable_value();
in2_value->mutable_data<float>( in2_value->mutable_data<float>(
make_ddim({static_cast<int64_t>(rows2.size()), row_numel}), cpu_place); paddle::framework::make_ddim(
{static_cast<int64_t>(rows2.size()), row_numel}),
cpu_place);
functor(ctx, in2_value, 2.0); functor(ctx, in2_value, 2.0);
std::unique_ptr<SelectedRows> output{new SelectedRows()}; std::unique_ptr<paddle::framework::SelectedRows> output{
new paddle::framework::SelectedRows()};
output->set_height(height); output->set_height(height);
auto* out_value = output->mutable_value(); auto* out_value = output->mutable_value();
// simplely concat two SelectedRows // simplely concat two SelectedRows
out_value->mutable_data<float>(make_ddim({7, 10}), cpu_place); out_value->mutable_data<float>(paddle::framework::make_ddim({7, 10}),
cpu_place);
SelectedRowsAddTo<CPUDeviceContext, float> add_to_functor; paddle::operators::math::SelectedRowsAddTo<paddle::platform::CPUDeviceContext,
float>
add_to_functor;
add_to_functor(ctx, *selected_rows1, 0, output.get()); add_to_functor(ctx, *selected_rows1, 0, output.get());
add_to_functor(ctx, *selected_rows2, in1_value->numel(), output.get()); add_to_functor(ctx, *selected_rows2, in1_value->numel(), output.get());
...@@ -169,11 +192,15 @@ TEST(selected_rows_functor, cpu_add_to) { ...@@ -169,11 +192,15 @@ TEST(selected_rows_functor, cpu_add_to) {
EXPECT_EQ(out_data[5 * row_numel + 7], 2.0); EXPECT_EQ(out_data[5 * row_numel + 7], 2.0);
EXPECT_EQ(out_data[6 * row_numel + 9], 2.0); EXPECT_EQ(out_data[6 * row_numel + 9], 2.0);
std::unique_ptr<Tensor> tensor1{new Tensor()}; std::unique_ptr<paddle::framework::Tensor> tensor1{
tensor1->mutable_data<float>(make_ddim({height, row_numel}), cpu_place); new paddle::framework::Tensor()};
tensor1->mutable_data<float>(
paddle::framework::make_ddim({height, row_numel}), cpu_place);
functor(ctx, tensor1.get(), 3.0); functor(ctx, tensor1.get(), 3.0);
SelectedRowsAddToTensor<CPUDeviceContext, float> add_to_tensor_functor; paddle::operators::math::SelectedRowsAddToTensor<
paddle::platform::CPUDeviceContext, float>
add_to_tensor_functor;
add_to_tensor_functor(ctx, *output, tensor1.get()); add_to_tensor_functor(ctx, *output, tensor1.get());
auto* tensor1_data = tensor1->data<float>(); auto* tensor1_data = tensor1->data<float>();
......
...@@ -23,11 +23,11 @@ class CopyMatrixRowsFunctor<platform::CPUDeviceContext, T> { ...@@ -23,11 +23,11 @@ class CopyMatrixRowsFunctor<platform::CPUDeviceContext, T> {
public: public:
void operator()(const platform::CPUDeviceContext& context, void operator()(const platform::CPUDeviceContext& context,
const framework::Tensor& src, const framework::Tensor& src,
framework::Vector<size_t> index_lod, framework::Tensor& dst, framework::Vector<size_t> index_lod, framework::Tensor* dst,
bool is_src_index) { bool is_src_index) {
size_t* index = index_lod.data(); size_t* index = index_lod.data();
auto src_dims = src.dims(); auto src_dims = src.dims();
auto dst_dims = dst.dims(); auto dst_dims = dst->dims();
PADDLE_ENFORCE_EQ(src_dims.size(), 2UL, PADDLE_ENFORCE_EQ(src_dims.size(), 2UL,
"The src must be matrix with rank 2."); "The src must be matrix with rank 2.");
PADDLE_ENFORCE_EQ(dst_dims.size(), 2UL, PADDLE_ENFORCE_EQ(dst_dims.size(), 2UL,
...@@ -37,7 +37,7 @@ class CopyMatrixRowsFunctor<platform::CPUDeviceContext, T> { ...@@ -37,7 +37,7 @@ class CopyMatrixRowsFunctor<platform::CPUDeviceContext, T> {
auto height = dst_dims[0]; auto height = dst_dims[0];
auto width = dst_dims[1]; auto width = dst_dims[1];
auto* src_data = src.data<T>(); auto* src_data = src.data<T>();
auto* dst_data = dst.data<T>(); auto* dst_data = dst->data<T>();
for (int i = 0; i < height; ++i) { for (int i = 0; i < height; ++i) {
if (is_src_index) { if (is_src_index) {
memcpy(dst_data + i * width, src_data + index[i] * width, memcpy(dst_data + i * width, src_data + index[i] * width,
......
...@@ -43,10 +43,10 @@ class CopyMatrixRowsFunctor<platform::CUDADeviceContext, T> { ...@@ -43,10 +43,10 @@ class CopyMatrixRowsFunctor<platform::CUDADeviceContext, T> {
public: public:
void operator()(const platform::CUDADeviceContext& context, void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& src, const framework::Tensor& src,
framework::Vector<size_t> index_lod, framework::Tensor& dst, framework::Vector<size_t> index_lod, framework::Tensor* dst,
bool is_src_index) { bool is_src_index) {
auto src_dims = src.dims(); auto src_dims = src.dims();
auto dst_dims = dst.dims(); auto dst_dims = dst->dims();
PADDLE_ENFORCE_EQ(src_dims.size(), 2, PADDLE_ENFORCE_EQ(src_dims.size(), 2,
"The src must be matrix with rank 2."); "The src must be matrix with rank 2.");
PADDLE_ENFORCE_EQ(dst_dims.size(), 2, PADDLE_ENFORCE_EQ(dst_dims.size(), 2,
...@@ -56,7 +56,7 @@ class CopyMatrixRowsFunctor<platform::CUDADeviceContext, T> { ...@@ -56,7 +56,7 @@ class CopyMatrixRowsFunctor<platform::CUDADeviceContext, T> {
auto height = dst_dims[0]; auto height = dst_dims[0];
auto width = dst_dims[1]; auto width = dst_dims[1];
auto* src_data = src.data<T>(); auto* src_data = src.data<T>();
auto* dst_data = dst.data<T>(); auto* dst_data = dst->data<T>();
dim3 threads(128, 8); dim3 threads(128, 8);
dim3 grid(8, 1); dim3 grid(8, 1);
......
...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
...@@ -35,7 +37,7 @@ class CopyMatrixRowsFunctor { ...@@ -35,7 +37,7 @@ class CopyMatrixRowsFunctor {
// copy the input src to the indexed rows of output dst. // copy the input src to the indexed rows of output dst.
// The indexed rows are based on the input index. // The indexed rows are based on the input index.
void operator()(const DeviceContext& context, const framework::Tensor& src, void operator()(const DeviceContext& context, const framework::Tensor& src,
framework::Vector<size_t> index_lod, framework::Tensor& dst, framework::Vector<size_t> index_lod, framework::Tensor* dst,
bool is_src_index); bool is_src_index);
}; };
...@@ -58,10 +60,10 @@ class LoDTensor2BatchFunctor { ...@@ -58,10 +60,10 @@ class LoDTensor2BatchFunctor {
public: public:
void operator()(const DeviceContext& context, void operator()(const DeviceContext& context,
const framework::LoDTensor& lod_tensor, const framework::LoDTensor& lod_tensor,
framework::LoDTensor& batch, bool is_cal_batch_lod, framework::LoDTensor* batch, bool is_cal_batch_lod,
bool is_reverse = false) const { bool is_reverse = false) const {
if (!is_cal_batch_lod) { if (!is_cal_batch_lod) {
auto lods = batch.lod(); auto lods = batch->lod();
PADDLE_ENFORCE_GT(lods.size(), 2UL); PADDLE_ENFORCE_GT(lods.size(), 2UL);
PADDLE_ENFORCE_EQ(lods[1].size(), PADDLE_ENFORCE_EQ(lods[1].size(),
static_cast<size_t>(lod_tensor.dims()[0])); static_cast<size_t>(lod_tensor.dims()[0]));
...@@ -141,7 +143,7 @@ class LoDTensor2BatchFunctor { ...@@ -141,7 +143,7 @@ class LoDTensor2BatchFunctor {
for (size_t i = 0; i < seq_info.size(); ++i) { for (size_t i = 0; i < seq_info.size(); ++i) {
seq_order[i] = seq_info[i].seq_idx; seq_order[i] = seq_info[i].seq_idx;
} }
batch.set_lod(batch_lods); batch->set_lod(batch_lods);
CopyMatrixRowsFunctor<DeviceContext, T> to_batch; CopyMatrixRowsFunctor<DeviceContext, T> to_batch;
to_batch(context, lod_tensor, batch_lods[1], batch, true); to_batch(context, lod_tensor, batch_lods[1], batch, true);
...@@ -153,11 +155,11 @@ class Batch2LoDTensorFunctor { ...@@ -153,11 +155,11 @@ class Batch2LoDTensorFunctor {
public: public:
void operator()(const DeviceContext& context, void operator()(const DeviceContext& context,
const framework::LoDTensor& batch, const framework::LoDTensor& batch,
framework::LoDTensor& lod_tensor) const { framework::LoDTensor* lod_tensor) const {
auto in_lod = batch.lod(); auto in_lod = batch.lod();
PADDLE_ENFORCE_GT(in_lod.size(), 2UL); PADDLE_ENFORCE_GT(in_lod.size(), 2UL);
PADDLE_ENFORCE_EQ(in_lod[1].size(), PADDLE_ENFORCE_EQ(in_lod[1].size(),
static_cast<size_t>(lod_tensor.dims()[0])); static_cast<size_t>(lod_tensor->dims()[0]));
CopyMatrixRowsFunctor<DeviceContext, T> to_seq; CopyMatrixRowsFunctor<DeviceContext, T> to_seq;
to_seq(context, batch, in_lod[1], lod_tensor, false); to_seq(context, batch, in_lod[1], lod_tensor, false);
} }
......
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/math/sequence_padding.h" #include "paddle/fluid/operators/math/sequence_padding.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <vector>
template <typename DeviceContext, typename Place, typename T> template <typename DeviceContext, typename Place, typename T>
void TestSequencePadding(const paddle::framework::LoD& lod, void TestSequencePadding(const paddle::framework::LoD& lod,
...@@ -75,7 +76,7 @@ void TestSequencePadding(const paddle::framework::LoD& lod, ...@@ -75,7 +76,7 @@ void TestSequencePadding(const paddle::framework::LoD& lod,
delete place; delete place;
delete context; delete context;
}; }
TEST(Seq2BatchPadding, CPU) { TEST(Seq2BatchPadding, CPU) {
paddle::framework::LoD lod1; paddle::framework::LoD lod1;
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/math/sequence_pooling.h" #include "paddle/fluid/operators/math/sequence_pooling.h"
#include <string>
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
namespace paddle { namespace paddle {
......
...@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <string>
#include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence_pooling.h" #include "paddle/fluid/operators/math/sequence_pooling.h"
#include "paddle/fluid/platform/cuda_helper.h" #include "paddle/fluid/platform/cuda_helper.h"
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include <string>
#include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
......
...@@ -21,15 +21,15 @@ namespace math { ...@@ -21,15 +21,15 @@ namespace math {
template <typename T> template <typename T>
class ScaleLoDTensorFunctor<platform::CPUDeviceContext, T> { class ScaleLoDTensorFunctor<platform::CPUDeviceContext, T> {
public: public:
void operator()(const platform::CPUDeviceContext& context, void operator()(const platform::CPUDeviceContext& context, const T* scales,
framework::LoDTensor& seq, const T* scales) { framework::LoDTensor* seq) {
const size_t level = 0; const size_t level = 0;
auto lod = seq.lod(); auto lod = seq->lod();
const size_t num_seq = lod[level].size() - 1; const size_t num_seq = lod[level].size() - 1;
size_t seq_width = seq.dims()[1]; size_t seq_width = seq->dims()[1];
framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); framework::LoD abs_offset_lod = framework::ToAbsOffset(lod);
T* seq_data = seq.mutable_data<T>(context.GetPlace()); T* seq_data = seq->mutable_data<T>(context.GetPlace());
for (size_t i = 0; i < num_seq; ++i) { for (size_t i = 0; i < num_seq; ++i) {
for (size_t j = lod[level][i] * seq_width; for (size_t j = lod[level][i] * seq_width;
j < lod[level][i + 1] * seq_width; ++j) { j < lod[level][i + 1] * seq_width; ++j) {
......
...@@ -35,14 +35,14 @@ __global__ void SequenceScaleKernel(T* seq, size_t* lod, const T* scales, ...@@ -35,14 +35,14 @@ __global__ void SequenceScaleKernel(T* seq, size_t* lod, const T* scales,
template <typename T> template <typename T>
class ScaleLoDTensorFunctor<platform::CUDADeviceContext, T> { class ScaleLoDTensorFunctor<platform::CUDADeviceContext, T> {
public: public:
void operator()(const platform::CUDADeviceContext& context, void operator()(const platform::CUDADeviceContext& context, const T* scales,
framework::LoDTensor& seq, const T* scales) { framework::LoDTensor* seq) {
const size_t level = 0; const size_t level = 0;
auto lod = seq.lod(); auto lod = seq->lod();
const size_t num_seq = lod[level].size() - 1; const size_t num_seq = lod[level].size() - 1;
const size_t seq_width = seq.numel() / seq.dims()[0]; const size_t seq_width = seq->numel() / seq->dims()[0];
framework::LoD abs_offset_lod = framework::ToAbsOffset(lod); framework::LoD abs_offset_lod = framework::ToAbsOffset(lod);
T* seq_data = seq.mutable_data<T>(context.GetPlace()); T* seq_data = seq->mutable_data<T>(context.GetPlace());
SequenceScaleKernel<T, PADDLE_CUDA_NUM_THREADS><<< SequenceScaleKernel<T, PADDLE_CUDA_NUM_THREADS><<<
num_seq, PADDLE_CUDA_NUM_THREADS, 0, context.stream()>>>( num_seq, PADDLE_CUDA_NUM_THREADS, 0, context.stream()>>>(
......
...@@ -46,8 +46,8 @@ namespace math { ...@@ -46,8 +46,8 @@ namespace math {
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class ScaleLoDTensorFunctor { class ScaleLoDTensorFunctor {
public: public:
void operator()(const DeviceContext& context, framework::LoDTensor& seq, void operator()(const DeviceContext& context, const T* scales,
const T* scales); framework::LoDTensor* seq);
}; };
} // namespace math } // namespace math
......
...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and ...@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/operators/math/vol2col.h" #include "paddle/fluid/operators/math/vol2col.h"
#include <vector>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <algorithm>
#include <vector>
#include "paddle/fluid/operators/math/vol2col.h" #include "paddle/fluid/operators/math/vol2col.h"
#include "paddle/fluid/platform/cuda_helper.h" #include "paddle/fluid/platform/cuda_helper.h"
......
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once #pragma once
#include <vector>
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
......
...@@ -15,6 +15,7 @@ limitations under the License. */ ...@@ -15,6 +15,7 @@ limitations under the License. */
#include "paddle/fluid/operators/math/vol2col.h" #include "paddle/fluid/operators/math/vol2col.h"
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <iostream> #include <iostream>
#include <vector>
template <typename DeviceContext, typename Place> template <typename DeviceContext, typename Place>
void testVol2col() { void testVol2col() {
...@@ -71,7 +72,7 @@ void testVol2col() { ...@@ -71,7 +72,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
input = input_tmp; input = input_tmp;
} else { } else {
paddle::framework::TensorCopy(input_tmp, *place, *context, &input); paddle::framework::TensorCopySync(input_tmp, *place, &input);
} }
output.mutable_data<float>({1, filter_size, filter_size, filter_size, output.mutable_data<float>({1, filter_size, filter_size, filter_size,
output_depth, output_height, output_width}, output_depth, output_height, output_width},
...@@ -85,7 +86,7 @@ void testVol2col() { ...@@ -85,7 +86,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
out_cfo_ptr = output.data<float>(); out_cfo_ptr = output.data<float>();
} else { } else {
TensorCopy(output, paddle::platform::CPUPlace(), *context, &output_tmp); TensorCopySync(output, paddle::platform::CPUPlace(), &output_tmp);
out_cfo_ptr = output_tmp.data<float>(); out_cfo_ptr = output_tmp.data<float>();
} }
...@@ -99,7 +100,7 @@ void testVol2col() { ...@@ -99,7 +100,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
input = input_tmp; input = input_tmp;
} else { } else {
TensorCopy(input_tmp, *place, *context, &input); TensorCopySync(input_tmp, *place, &input);
} }
paddle::operators::math::Col2VolFunctor<DeviceContext, float> col2vol; paddle::operators::math::Col2VolFunctor<DeviceContext, float> col2vol;
...@@ -109,7 +110,7 @@ void testVol2col() { ...@@ -109,7 +110,7 @@ void testVol2col() {
if (paddle::platform::is_cpu_place(*place)) { if (paddle::platform::is_cpu_place(*place)) {
in_ptr = input.data<float>(); in_ptr = input.data<float>();
} else { } else {
TensorCopy(input, paddle::platform::CPUPlace(), *context, &input_tmp); TensorCopySync(input, paddle::platform::CPUPlace(), &input_tmp);
in_ptr = input_tmp.data<float>(); in_ptr = input_tmp.data<float>();
} }
......
...@@ -15,9 +15,9 @@ limitations under the License. */ ...@@ -15,9 +15,9 @@ limitations under the License. */
#pragma once #pragma once
#include <algorithm> #include <algorithm>
#include <condition_variable> #include <condition_variable> // NOLINT
#include <memory> #include <memory>
#include <mutex> #include <mutex> // NOLINT
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
......
...@@ -228,10 +228,8 @@ TEST_F(NCCLTester, ncclReduceOp) { ...@@ -228,10 +228,8 @@ TEST_F(NCCLTester, ncclReduceOp) {
result_tensor->Resize(kDims); result_tensor->Resize(kDims);
auto *ct = result_tensor->mutable_data<float>(cpu_place); auto *ct = result_tensor->mutable_data<float>(cpu_place);
paddle::memory::Copy( paddle::memory::Copy(cpu_place, ct, p::CUDAPlace(gpu_list_[kRoot]), rt,
cpu_place, ct, p::CUDAPlace(gpu_list_[kRoot]), rt, recv_tensor.numel() * sizeof(float), nullptr);
recv_tensor.numel() * sizeof(float),
static_cast<p::CUDADeviceContext *>(dev_ctxs_[kRoot])->stream());
for (int64_t j = 0; j < f::product(kDims); ++j) { for (int64_t j = 0; j < f::product(kDims); ++j) {
ASSERT_NEAR(ct[j], expected_result, 1e-5); ASSERT_NEAR(ct[j], expected_result, 1e-5);
......
...@@ -168,11 +168,10 @@ void DoubleBufferReader::PrefetchThreadFunc() { ...@@ -168,11 +168,10 @@ void DoubleBufferReader::PrefetchThreadFunc() {
} }
if (platform::is_gpu_place(place_)) { if (platform::is_gpu_place(place_)) {
auto& gpu_batch = gpu_tensor_cache_[cached_tensor_id]; auto& gpu_batch = gpu_tensor_cache_[cached_tensor_id];
auto* gpu_ctx = ctxs_[cached_tensor_id].get();
gpu_batch.resize(cpu_batch.size()); gpu_batch.resize(cpu_batch.size());
for (size_t i = 0; i < cpu_batch.size(); ++i) { for (size_t i = 0; i < cpu_batch.size(); ++i) {
framework::TensorCopy(cpu_batch[i], place_, *gpu_ctx, &gpu_batch[i], // TODO(fengjiayi): Use asynchronous TensorCopy instead
true); framework::TensorCopySync(cpu_batch[i], place_, &gpu_batch[i]);
gpu_batch[i].set_lod(cpu_batch[i].lod()); gpu_batch[i].set_lod(cpu_batch[i].lod());
} }
} }
......
...@@ -12,7 +12,9 @@ ...@@ -12,7 +12,9 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "reader_op_registry.h" #include "paddle/fluid/operators/reader/reader_op_registry.h"
#include <string>
#include <vector>
namespace paddle { namespace paddle {
namespace operators { namespace operators {
......
...@@ -14,6 +14,8 @@ ...@@ -14,6 +14,8 @@
#pragma once #pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h" #include "paddle/fluid/framework/reader.h"
......
...@@ -93,8 +93,14 @@ class ReshapeOp : public framework::OperatorWithKernel { ...@@ -93,8 +93,14 @@ class ReshapeOp : public framework::OperatorWithKernel {
if (unk_dim_idx != -1) { if (unk_dim_idx != -1) {
output_shape[unk_dim_idx] = -in_size / capacity; output_shape[unk_dim_idx] = -in_size / capacity;
PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size, // in_size < 0 and is un-determinate in compile time, skip the check,
"Invalid shape is given."); // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
// capacity = -24, in_size = -8, output_shape[0] = 0
// the following check will fail.
if (in_size > 0) {
PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
"Invalid shape is given.");
}
} else { } else {
PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given."); PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
} }
...@@ -124,10 +130,8 @@ class ReshapeKernel : public framework::OpKernel<T> { ...@@ -124,10 +130,8 @@ class ReshapeKernel : public framework::OpKernel<T> {
auto *shape_data = shape_tensor->data<int>(); auto *shape_data = shape_tensor->data<int>();
framework::Tensor cpu_shape_tensor; framework::Tensor cpu_shape_tensor;
if (platform::is_gpu_place(ctx.GetPlace())) { if (platform::is_gpu_place(ctx.GetPlace())) {
TensorCopy(*shape_tensor, platform::CPUPlace(), ctx.device_context(), TensorCopySync(*shape_tensor, platform::CPUPlace(), &cpu_shape_tensor);
&cpu_shape_tensor);
shape_data = cpu_shape_tensor.data<int>(); shape_data = cpu_shape_tensor.data<int>();
ctx.device_context().Wait();
} }
auto shape = auto shape =
std::vector<int>(shape_data, shape_data + shape_tensor->numel()); std::vector<int>(shape_data, shape_data + shape_tensor->numel());
...@@ -146,9 +150,7 @@ class ReshapeKernel : public framework::OpKernel<T> { ...@@ -146,9 +150,7 @@ class ReshapeKernel : public framework::OpKernel<T> {
out->Resize(out_dims); out->Resize(out_dims);
if (!inplace) { if (!inplace) {
out->mutable_data<T>(ctx.GetPlace()); out->mutable_data<T>(ctx.GetPlace());
framework::TensorCopy(*in, ctx.GetPlace(), ctx.device_context(), out); framework::TensorCopySync(*in, ctx.GetPlace(), out);
ctx.device_context().Wait();
// TensorCopy will resize to in_dims.
out->Resize(out_dims); out->Resize(out_dims);
} else { } else {
out->ShareDataWith(*in); out->ShareDataWith(*in);
......
...@@ -18,8 +18,7 @@ namespace paddle { ...@@ -18,8 +18,7 @@ namespace paddle {
namespace operators { namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
static constexpr int kROISize = 5;
class ROIPoolOp : public framework::OperatorWithKernel { class ROIPoolOp : public framework::OperatorWithKernel {
public: public:
...@@ -40,11 +39,11 @@ class ROIPoolOp : public framework::OperatorWithKernel { ...@@ -40,11 +39,11 @@ class ROIPoolOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(input_dims.size() == 4, PADDLE_ENFORCE(input_dims.size() == 4,
"The format of input tensor is NCHW."); "The format of input tensor is NCHW.");
PADDLE_ENFORCE(rois_dims.size() == 2, PADDLE_ENFORCE(rois_dims.size() == 2,
"ROIs should be a 2-D tensor of shape (num_rois, 5)" "ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[batch_id, x1, y1, x2, y2], …]."); "given as [[x1, y1, x2, y2], …].");
PADDLE_ENFORCE(rois_dims[1] == kROISize, PADDLE_ENFORCE(rois_dims[1] == kROISize,
"ROIs should be a 2-D tensor of shape (num_rois, 5)" "ROIs should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[batch_id, x1, y1, x2, y2], …]."); "given as [[x1, y1, x2, y2], …].");
int pooled_height = ctx->Attrs().Get<int>("pooled_height"); int pooled_height = ctx->Attrs().Get<int>("pooled_height");
int pooled_width = ctx->Attrs().Get<int>("pooled_width"); int pooled_width = ctx->Attrs().Get<int>("pooled_width");
...@@ -109,10 +108,10 @@ class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -109,10 +108,10 @@ class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
"H is the height of the feature, and " "H is the height of the feature, and "
"W is the width of the feature."); "W is the width of the feature.");
AddInput("ROIs", AddInput("ROIs",
"(Tensor), " "(LoDTensor), "
"ROIs (Regions of Interest) to pool over. " "ROIs (Regions of Interest) to pool over. "
"should be a 2-D tensor of shape (num_rois, 5)" "should be a 2-D LoDTensor of shape (num_rois, 4)"
"given as [[batch_id, x1, y1, x2, y2], …]. " "given as [[x1, y1, x2, y2], …]. "
"Where batch_id is the id of the data, " "Where batch_id is the id of the data, "
"(x1, y1) is the top left coordinates, and " "(x1, y1) is the top left coordinates, and "
"(x2, y2) is the bottom right coordinates."); "(x2, y2) is the bottom right coordinates.");
......
...@@ -19,10 +19,10 @@ namespace paddle { ...@@ -19,10 +19,10 @@ namespace paddle {
namespace operators { namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
static constexpr int kNumCUDAThreads = 512; static constexpr int kNumCUDAThreads = 512;
static constexpr int kNumMaxinumNumBlocks = 4096; static constexpr int kNumMaxinumNumBlocks = 4096;
static constexpr int kROISize = 5;
static inline int NumBlocks(const int N) { static inline int NumBlocks(const int N) {
return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads, return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads,
...@@ -30,13 +30,11 @@ static inline int NumBlocks(const int N) { ...@@ -30,13 +30,11 @@ static inline int NumBlocks(const int N) {
} }
template <typename T> template <typename T>
__global__ void GPUROIPoolForward(const int nthreads, const T* input_data, __global__ void GPUROIPoolForward(
const int64_t* input_rois, const int nthreads, const T* input_data, const int64_t* input_rois,
const float spatial_scale, const int channels, const float spatial_scale, const int channels, const int height,
const int height, const int width, const int width, const int pooled_height, const int pooled_width,
const int pooled_height, int* roi_batch_id_data, T* output_data, int64_t* argmax_data) {
const int pooled_width, T* output_data,
int64_t* argmax_data) {
int index = blockIdx.x * blockDim.x + threadIdx.x; int index = blockIdx.x * blockDim.x + threadIdx.x;
int offset = blockDim.x * gridDim.x; int offset = blockDim.x * gridDim.x;
for (size_t i = index; i < nthreads; i += offset) { for (size_t i = index; i < nthreads; i += offset) {
...@@ -46,11 +44,11 @@ __global__ void GPUROIPoolForward(const int nthreads, const T* input_data, ...@@ -46,11 +44,11 @@ __global__ void GPUROIPoolForward(const int nthreads, const T* input_data,
int n = index / pooled_width / pooled_height / channels; int n = index / pooled_width / pooled_height / channels;
const int64_t* offset_input_rois = input_rois + n * kROISize; const int64_t* offset_input_rois = input_rois + n * kROISize;
int roi_batch_ind = offset_input_rois[0]; int roi_batch_ind = roi_batch_id_data[n];
int roi_start_w = round(offset_input_rois[1] * spatial_scale); int roi_start_w = round(offset_input_rois[0] * spatial_scale);
int roi_start_h = round(offset_input_rois[2] * spatial_scale); int roi_start_h = round(offset_input_rois[1] * spatial_scale);
int roi_end_w = round(offset_input_rois[3] * spatial_scale); int roi_end_w = round(offset_input_rois[2] * spatial_scale);
int roi_end_h = round(offset_input_rois[4] * spatial_scale); int roi_end_h = round(offset_input_rois[3] * spatial_scale);
int roi_width = max(roi_end_w - roi_start_w + 1, 1); int roi_width = max(roi_end_w - roi_start_w + 1, 1);
int roi_height = max(roi_end_h - roi_start_h + 1, 1); int roi_height = max(roi_end_h - roi_start_h + 1, 1);
...@@ -93,7 +91,8 @@ __global__ void GPUROIPoolBackward( ...@@ -93,7 +91,8 @@ __global__ void GPUROIPoolBackward(
const int nthreads, const int64_t* input_rois, const T* output_grad, const int nthreads, const int64_t* input_rois, const T* output_grad,
const int64_t* argmax_data, const int num_rois, const float spatial_scale, const int64_t* argmax_data, const int num_rois, const float spatial_scale,
const int channels, const int height, const int width, const int channels, const int height, const int width,
const int pooled_height, const int pooled_width, T* input_grad) { const int pooled_height, const int pooled_width, int* roi_batch_id_data,
T* input_grad) {
int index = blockIdx.x * blockDim.x + threadIdx.x; int index = blockIdx.x * blockDim.x + threadIdx.x;
int offset = blockDim.x * gridDim.x; int offset = blockDim.x * gridDim.x;
for (int i = index; i < nthreads; i += offset) { for (int i = index; i < nthreads; i += offset) {
...@@ -102,8 +101,7 @@ __global__ void GPUROIPoolBackward( ...@@ -102,8 +101,7 @@ __global__ void GPUROIPoolBackward(
int c = (index / pooled_width / pooled_height) % channels; int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels; int n = index / pooled_width / pooled_height / channels;
const int64_t* offset_input_rois = input_rois + n * kROISize; int roi_batch_ind = roi_batch_id_data[n];
int roi_batch_ind = offset_input_rois[0];
int input_offset = (roi_batch_ind * channels + c) * height * width; int input_offset = (roi_batch_ind * channels + c) * height * width;
int output_offset = (n * channels + c) * pooled_height * pooled_width; int output_offset = (n * channels + c) * pooled_height * pooled_width;
const T* offset_output_grad = output_grad + output_offset; const T* offset_output_grad = output_grad + output_offset;
...@@ -124,7 +122,7 @@ class GPUROIPoolOpKernel : public framework::OpKernel<T> { ...@@ -124,7 +122,7 @@ class GPUROIPoolOpKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<Tensor>("X"); auto* in = ctx.Input<Tensor>("X");
auto* rois = ctx.Input<Tensor>("ROIs"); auto* rois = ctx.Input<LoDTensor>("ROIs");
auto* out = ctx.Output<Tensor>("Out"); auto* out = ctx.Output<Tensor>("Out");
auto* argmax = ctx.Output<Tensor>("Argmax"); auto* argmax = ctx.Output<Tensor>("Argmax");
...@@ -133,23 +131,46 @@ class GPUROIPoolOpKernel : public framework::OpKernel<T> { ...@@ -133,23 +131,46 @@ class GPUROIPoolOpKernel : public framework::OpKernel<T> {
auto spatial_scale = ctx.Attr<float>("spatial_scale"); auto spatial_scale = ctx.Attr<float>("spatial_scale");
auto in_dims = in->dims(); auto in_dims = in->dims();
int batch_size = in_dims[0];
auto in_stride = framework::stride(in_dims); auto in_stride = framework::stride(in_dims);
int channels = in_dims[1]; int channels = in_dims[1];
int height = in_dims[2]; int height = in_dims[2];
int width = in_dims[3]; int width = in_dims[3];
size_t rois_num = rois->dims()[0]; int rois_num = rois->dims()[0];
if (rois_num == 0) return; if (rois_num == 0) return;
int output_size = out->numel(); int output_size = out->numel();
int blocks = NumBlocks(output_size); int blocks = NumBlocks(output_size);
int threads = kNumCUDAThreads; int threads = kNumCUDAThreads;
framework::Tensor roi_batch_id_list;
roi_batch_id_list.Resize({rois_num});
int* roi_batch_id_data =
roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
auto rois_lod = rois->lod().back();
int rois_batch_size = rois_lod.size() - 1;
PADDLE_ENFORCE_EQ(
rois_batch_size, batch_size,
"The rois_batch_size and imgs batch_size must be the same.");
int rois_num_with_lod = rois_lod[rois_batch_size];
PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
"The rois_num from input and lod must be the same.");
for (int n = 0; n < rois_batch_size; ++n) {
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
roi_batch_id_data[i] = n;
}
}
framework::Tensor roi_batch_id_list_gpu;
framework::TensorCopy(roi_batch_id_list, ctx.GetPlace(),
ctx.device_context(), &roi_batch_id_list_gpu);
GPUROIPoolForward< GPUROIPoolForward<
T><<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>( T><<<blocks, threads, 0, ctx.cuda_device_context().stream()>>>(
output_size, in->data<T>(), rois->data<int64_t>(), spatial_scale, output_size, in->data<T>(), rois->data<int64_t>(), spatial_scale,
channels, height, width, pooled_height, pooled_width, channels, height, width, pooled_height, pooled_width,
out->mutable_data<T>(ctx.GetPlace()), roi_batch_id_list_gpu.data<int>(), out->mutable_data<T>(ctx.GetPlace()),
argmax->mutable_data<int64_t>(ctx.GetPlace())); argmax->mutable_data<int64_t>(ctx.GetPlace()));
} }
}; };
...@@ -159,7 +180,7 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> { ...@@ -159,7 +180,7 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<Tensor>("X"); auto* in = ctx.Input<Tensor>("X");
auto* rois = ctx.Input<Tensor>("ROIs"); auto* rois = ctx.Input<LoDTensor>("ROIs");
auto* argmax = ctx.Input<Tensor>("Argmax"); auto* argmax = ctx.Input<Tensor>("Argmax");
auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out")); auto* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
...@@ -169,12 +190,27 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> { ...@@ -169,12 +190,27 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
auto pooled_width = ctx.Attr<int>("pooled_width"); auto pooled_width = ctx.Attr<int>("pooled_width");
auto spatial_scale = ctx.Attr<float>("spatial_scale"); auto spatial_scale = ctx.Attr<float>("spatial_scale");
size_t rois_num = rois->dims()[0]; int rois_num = rois->dims()[0];
int channels = in->dims()[1]; int channels = in->dims()[1];
int height = in->dims()[2]; int height = in->dims()[2];
int width = in->dims()[3]; int width = in->dims()[3];
if (x_grad) { if (x_grad) {
framework::Tensor roi_batch_id_list;
roi_batch_id_list.Resize({rois_num});
int* roi_batch_id_data =
roi_batch_id_list.mutable_data<int>(platform::CPUPlace());
auto rois_lod = rois->lod().back();
int rois_batch_size = rois_lod.size() - 1;
for (int n = 0; n < rois_batch_size; ++n) {
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
roi_batch_id_data[i] = n;
}
}
framework::Tensor roi_batch_id_list_gpu;
framework::TensorCopy(roi_batch_id_list, ctx.GetPlace(),
ctx.device_context(), &roi_batch_id_list_gpu);
x_grad->mutable_data<T>(ctx.GetPlace()); x_grad->mutable_data<T>(ctx.GetPlace());
math::SetConstant<Place, T> set_zero; math::SetConstant<Place, T> set_zero;
set_zero(ctx.cuda_device_context(), x_grad, static_cast<T>(0)); set_zero(ctx.cuda_device_context(), x_grad, static_cast<T>(0));
...@@ -189,6 +225,7 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> { ...@@ -189,6 +225,7 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
output_grad_size, rois->data<int64_t>(), out_grad->data<T>(), output_grad_size, rois->data<int64_t>(), out_grad->data<T>(),
argmax->data<int64_t>(), rois_num, spatial_scale, channels, height, argmax->data<int64_t>(), rois_num, spatial_scale, channels, height,
width, pooled_height, pooled_width, width, pooled_height, pooled_width,
roi_batch_id_list_gpu.data<int>(),
x_grad->mutable_data<T>(ctx.GetPlace())); x_grad->mutable_data<T>(ctx.GetPlace()));
} }
} }
......
...@@ -21,12 +21,14 @@ limitations under the License. */ ...@@ -21,12 +21,14 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace operators { namespace operators {
static constexpr int kROISize = 4;
template <typename DeviceContext, typename T> template <typename DeviceContext, typename T>
class CPUROIPoolOpKernel : public framework::OpKernel<T> { class CPUROIPoolOpKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<framework::Tensor>("X"); auto* in = ctx.Input<framework::Tensor>("X");
auto* rois = ctx.Input<framework::Tensor>("ROIs"); auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
auto* out = ctx.Output<framework::Tensor>("Out"); auto* out = ctx.Output<framework::Tensor>("Out");
auto* argmax = ctx.Output<framework::Tensor>("Argmax"); auto* argmax = ctx.Output<framework::Tensor>("Argmax");
...@@ -47,24 +49,36 @@ class CPUROIPoolOpKernel : public framework::OpKernel<T> { ...@@ -47,24 +49,36 @@ class CPUROIPoolOpKernel : public framework::OpKernel<T> {
auto out_stride = framework::stride(out->dims()); auto out_stride = framework::stride(out->dims());
const T* input_data = in->data<T>(); const T* input_data = in->data<T>();
const int64_t* rois_data = rois->data<int64_t>();
T* output_data = out->mutable_data<T>(ctx.GetPlace());
int64_t* argmax_data = argmax->mutable_data<int64_t>(ctx.GetPlace());
for (int n = 0; n < rois_num; ++n) { framework::Tensor roi_batch_id_list;
int roi_batch_id = rois_data[0]; roi_batch_id_list.Resize({rois_num});
PADDLE_ENFORCE_GE(roi_batch_id, 0); int* roi_batch_id_data =
PADDLE_ENFORCE_LT(roi_batch_id, batch_size); roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
rois_data += roi_stride[0];
auto rois_lod = rois->lod().back();
int rois_batch_size = rois_lod.size() - 1;
PADDLE_ENFORCE_EQ(
rois_batch_size, batch_size,
"The rois_batch_size and imgs batch_size must be the same.");
int rois_num_with_lod = rois_lod[rois_batch_size];
PADDLE_ENFORCE_EQ(rois_num, rois_num_with_lod,
"The rois_num from input and lod must be the same.");
for (int n = 0; n < rois_batch_size; ++n) {
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
roi_batch_id_data[i] = n;
}
} }
rois_data = rois->data<int64_t>(); T* output_data = out->mutable_data<T>(ctx.GetPlace());
int64_t* argmax_data = argmax->mutable_data<int64_t>(ctx.GetPlace());
const int64_t* rois_data = rois->data<int64_t>();
for (int n = 0; n < rois_num; ++n) { for (int n = 0; n < rois_num; ++n) {
int roi_batch_id = rois_data[0]; int roi_batch_id = roi_batch_id_data[n];
int roi_start_w = round(rois_data[1] * spatial_scale); int roi_start_w = round(rois_data[0] * spatial_scale);
int roi_start_h = round(rois_data[2] * spatial_scale); int roi_start_h = round(rois_data[1] * spatial_scale);
int roi_end_w = round(rois_data[3] * spatial_scale); int roi_end_w = round(rois_data[2] * spatial_scale);
int roi_end_h = round(rois_data[4] * spatial_scale); int roi_end_h = round(rois_data[3] * spatial_scale);
// Force malformed ROIs to be 1x1 // Force malformed ROIs to be 1x1
int roi_height = std::max(roi_end_h - roi_start_h + 1, 1); int roi_height = std::max(roi_end_h - roi_start_h + 1, 1);
...@@ -133,7 +147,7 @@ class CPUROIPoolGradOpKernel : public framework::OpKernel<T> { ...@@ -133,7 +147,7 @@ class CPUROIPoolGradOpKernel : public framework::OpKernel<T> {
public: public:
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto* in = ctx.Input<framework::Tensor>("X"); auto* in = ctx.Input<framework::Tensor>("X");
auto* rois = ctx.Input<framework::Tensor>("ROIs"); auto* rois = ctx.Input<framework::LoDTensor>("ROIs");
auto* argmax = ctx.Input<framework::Tensor>("Argmax"); auto* argmax = ctx.Input<framework::Tensor>("Argmax");
auto* out_grad = auto* out_grad =
ctx.Input<framework::Tensor>(framework::GradVarName("Out")); ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
...@@ -143,6 +157,20 @@ class CPUROIPoolGradOpKernel : public framework::OpKernel<T> { ...@@ -143,6 +157,20 @@ class CPUROIPoolGradOpKernel : public framework::OpKernel<T> {
auto pooled_width = ctx.Attr<int>("pooled_width"); auto pooled_width = ctx.Attr<int>("pooled_width");
if (in_grad) { if (in_grad) {
int rois_num = rois->dims()[0];
framework::Tensor roi_batch_id_list;
roi_batch_id_list.Resize({rois_num});
int* roi_batch_id_data =
roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
auto rois_lod = rois->lod().back();
int rois_batch_size = rois_lod.size() - 1;
for (int n = 0; n < rois_batch_size; ++n) {
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
roi_batch_id_data[i] = n;
}
}
const int64_t* rois_data = rois->data<int64_t>(); const int64_t* rois_data = rois->data<int64_t>();
const T* out_grad_data = out_grad->data<T>(); const T* out_grad_data = out_grad->data<T>();
const int64_t* argmax_data = argmax->data<int64_t>(); const int64_t* argmax_data = argmax->data<int64_t>();
...@@ -156,11 +184,10 @@ class CPUROIPoolGradOpKernel : public framework::OpKernel<T> { ...@@ -156,11 +184,10 @@ class CPUROIPoolGradOpKernel : public framework::OpKernel<T> {
auto roi_stride = framework::stride(rois->dims()); auto roi_stride = framework::stride(rois->dims());
auto out_stride = framework::stride(out_grad->dims()); auto out_stride = framework::stride(out_grad->dims());
int rois_num = rois->dims()[0];
int channels = in->dims()[1]; int channels = in->dims()[1];
for (int n = 0; n < rois_num; ++n) { for (int n = 0; n < rois_num; ++n) {
int roi_batch_idx = rois_data[0]; int roi_batch_idx = roi_batch_id_data[n];
T* batch_grad_data = in_grad_data + roi_batch_idx * in_stride[0]; T* batch_grad_data = in_grad_data + roi_batch_idx * in_stride[0];
for (int c = 0; c < channels; ++c) { for (int c = 0; c < channels; ++c) {
for (int ph = 0; ph < pooled_height; ++ph) { for (int ph = 0; ph < pooled_height; ++ph) {
......
...@@ -41,6 +41,8 @@ class SendOp : public framework::OperatorBase { ...@@ -41,6 +41,8 @@ class SendOp : public framework::OperatorBase {
std::vector<std::string> endpoints = std::vector<std::string> endpoints =
Attr<std::vector<std::string>>("endpoints"); Attr<std::vector<std::string>>("endpoints");
bool sync_mode = Attr<bool>("sync_mode");
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
auto& ctx = *pool.Get(place); auto& ctx = *pool.Get(place);
...@@ -64,11 +66,13 @@ class SendOp : public framework::OperatorBase { ...@@ -64,11 +66,13 @@ class SendOp : public framework::OperatorBase {
} }
PADDLE_ENFORCE(rpc_client->Wait()); PADDLE_ENFORCE(rpc_client->Wait());
for (auto& ep : endpoints) { if (sync_mode) {
VLOG(3) << "batch barrier, ep: " << ep; for (auto& ep : endpoints) {
rpc_client->AsyncSendBatchBarrier(ep); VLOG(3) << "batch barrier, ep: " << ep;
rpc_client->AsyncSendBatchBarrier(ep);
}
PADDLE_ENFORCE(rpc_client->Wait());
} }
PADDLE_ENFORCE(rpc_client->Wait());
if (outs.size() > 0) { if (outs.size() > 0) {
for (size_t i = 0; i < outs.size(); i++) { for (size_t i = 0; i < outs.size(); i++) {
...@@ -112,6 +116,7 @@ This operator will send tensor to recv_op at the parameter server. ...@@ -112,6 +116,7 @@ This operator will send tensor to recv_op at the parameter server.
"Server endpoints in the order of input " "Server endpoints in the order of input "
"variables for mapping") "variables for mapping")
.SetDefault({}); .SetDefault({});
AddAttr<bool>("sync_mode", "work in sync_mode or not").SetDefault(true);
} }
}; };
......
...@@ -137,6 +137,8 @@ void StartServerNet(bool is_sparse) { ...@@ -137,6 +137,8 @@ void StartServerNet(bool is_sparse) {
attrs.insert({"GradList", std::vector<std::string>({"x1"})}); attrs.insert({"GradList", std::vector<std::string>({"x1"})});
attrs.insert({"OptimizeBlock", optimize_block}); attrs.insert({"OptimizeBlock", optimize_block});
attrs.insert({"PrefetchBlock", prefetch_block}); attrs.insert({"PrefetchBlock", prefetch_block});
attrs.insert({"grad_to_block_id", std::vector<std::string>({""})});
attrs.insert({"sync_mode", true});
listen_and_serv_op = listen_and_serv_op =
f::OpRegistry::CreateOp("listen_and_serv", {{"X", {"x1"}}}, {}, attrs); f::OpRegistry::CreateOp("listen_and_serv", {{"X", {"x1"}}}, {}, attrs);
listen_and_serv_op->Run(scope, place); listen_and_serv_op->Run(scope, place);
......
...@@ -222,8 +222,8 @@ class WarpCTCGradKernel : public framework::OpKernel<T> { ...@@ -222,8 +222,8 @@ class WarpCTCGradKernel : public framework::OpKernel<T> {
const T* loss_grad_data = loss_grad->data<T>(); const T* loss_grad_data = loss_grad->data<T>();
math::ScaleLoDTensorFunctor<DeviceContext, T>()( math::ScaleLoDTensorFunctor<DeviceContext, T>()(
ctx.template device_context<DeviceContext>(), *logits_grad, ctx.template device_context<DeviceContext>(), loss_grad_data,
loss_grad_data); logits_grad);
} }
}; };
......
...@@ -63,15 +63,9 @@ struct CastToPyBufferImpl<true, I, ARGS...> { ...@@ -63,15 +63,9 @@ struct CastToPyBufferImpl<true, I, ARGS...> {
auto *dst_ptr = static_cast<void *>(dst_tensor.mutable_data<CUR_TYPE>( auto *dst_ptr = static_cast<void *>(dst_tensor.mutable_data<CUR_TYPE>(
tensor.dims(), platform::CPUPlace())); tensor.dims(), platform::CPUPlace()));
platform::DeviceContextPool &pool = paddle::platform::GpuMemcpySync(dst_ptr, src_ptr,
platform::DeviceContextPool::Instance(); sizeof(CUR_TYPE) * tensor.numel(),
auto dev_ctx = static_cast<const platform::CUDADeviceContext *>( cudaMemcpyDeviceToHost);
pool.Get(tensor.place()));
paddle::platform::GpuMemcpyAsync(
dst_ptr, src_ptr, sizeof(CUR_TYPE) * tensor.numel(),
cudaMemcpyDeviceToHost, dev_ctx->stream());
dev_ctx->Wait();
#else #else
PADDLE_THROW("'CUDAPlace' is not supported in CPU only device."); PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
#endif #endif
...@@ -184,17 +178,8 @@ void PyCUDATensorSetFromArray( ...@@ -184,17 +178,8 @@ void PyCUDATensorSetFromArray(
self->Resize(framework::make_ddim(dims)); self->Resize(framework::make_ddim(dims));
auto *dst = self->mutable_data<T>(place); auto *dst = self->mutable_data<T>(place);
paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(),
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); cudaMemcpyHostToDevice);
auto dev_ctx =
static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
paddle::platform::GpuMemcpyAsync(dst, array.data(), sizeof(T) * array.size(),
cudaMemcpyHostToDevice, dev_ctx->stream());
// NOTE: For safety, here wait the copy complete.
// It because the CPU array.data() could be destroyed after this method.
// If we make this method async, it could be copied data from a memory buffer
// that has been freed.
dev_ctx->Wait();
} }
template <> template <>
...@@ -214,18 +199,9 @@ void PyCUDATensorSetFromArray( ...@@ -214,18 +199,9 @@ void PyCUDATensorSetFromArray(
self->Resize(framework::make_ddim(dims)); self->Resize(framework::make_ddim(dims));
auto *dst = self->mutable_data<platform::float16>(place); auto *dst = self->mutable_data<platform::float16>(place);
paddle::platform::GpuMemcpySync(dst, array.data(),
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); sizeof(uint16_t) * array.size(),
auto dev_ctx = cudaMemcpyHostToDevice);
static_cast<const platform::CUDADeviceContext *>(pool.Get(place));
paddle::platform::GpuMemcpyAsync(dst, array.data(),
sizeof(uint16_t) * array.size(),
cudaMemcpyHostToDevice, dev_ctx->stream());
// NOTE: For safety, here wait the copy complete.
// It because the CPU array.data() could be destroyed after this method.
// If we make this method async, it could be copied data from a memory buffer
// that has been freed.
dev_ctx->Wait();
} }
template <typename T> template <typename T>
......
...@@ -12,10 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,10 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <chrono> #include <gflags/gflags.h> // NOLINT
#include <gtest/gtest.h> // NOLINT
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include "paddle/utils/CustomStackTrace.h" #include "paddle/utils/CustomStackTrace.h"
#include "paddle/utils/Locks.h" #include "paddle/utils/Locks.h"
...@@ -39,14 +37,10 @@ void testNormalImpl( ...@@ -39,14 +37,10 @@ void testNormalImpl(
threads.reserve(FLAGS_test_thread_num); threads.reserve(FLAGS_test_thread_num);
for (int32_t i = 0; i < FLAGS_test_thread_num; ++i) { for (int32_t i = 0; i < FLAGS_test_thread_num; ++i) {
threads.emplace_back(new std::thread([&tracer, threads.emplace_back(
&countDown, new std::thread([&tracer, &startBarrier, &doneBarrier, &callback] {
&layerSize, callback(tracer, countDown, layerSize, startBarrier, doneBarrier);
&startBarrier, }));
&doneBarrier,
&callback] {
callback(tracer, countDown, layerSize, startBarrier, doneBarrier);
}));
} }
size_t cntDown = countDown; size_t cntDown = countDown;
while (cntDown-- > 0) { while (cntDown-- > 0) {
......
...@@ -143,7 +143,8 @@ class DistributeTranspiler: ...@@ -143,7 +143,8 @@ class DistributeTranspiler:
program=None, program=None,
pservers="127.0.0.1:6174", pservers="127.0.0.1:6174",
trainers=1, trainers=1,
split_method=splitter.round_robin): split_method=splitter.round_robin,
sync_mode=True):
""" """
Transpile the program to distributed data-parallelism programs. Transpile the program to distributed data-parallelism programs.
The main_program will be transformed to use a remote parameter server The main_program will be transformed to use a remote parameter server
...@@ -184,6 +185,9 @@ class DistributeTranspiler: ...@@ -184,6 +185,9 @@ class DistributeTranspiler:
:param split_method: A function to determin how to split variables :param split_method: A function to determin how to split variables
to different servers equally. to different servers equally.
:type split_method: function :type split_method: function
:type sync_mode: boolean default True
:param sync_mode: if sync_mode is set True, it means that dist transpiler
will transpile the program into sync_mode pserver and trainer program.
""" """
assert (callable(split_method)) assert (callable(split_method))
if program is None: if program is None:
...@@ -191,6 +195,7 @@ class DistributeTranspiler: ...@@ -191,6 +195,7 @@ class DistributeTranspiler:
self.origin_program = program self.origin_program = program
self.trainer_num = trainers self.trainer_num = trainers
self.optimize_ops = optimize_ops self.optimize_ops = optimize_ops
self.sync_mode = sync_mode
# TODO(typhoonzero): currently trainer_id is fetched from cluster system # TODO(typhoonzero): currently trainer_id is fetched from cluster system
# like Kubernetes, we should port this to use etcd later when developing # like Kubernetes, we should port this to use etcd later when developing
# fluid distributed training with fault-tolerance. # fluid distributed training with fault-tolerance.
...@@ -295,8 +300,11 @@ class DistributeTranspiler: ...@@ -295,8 +300,11 @@ class DistributeTranspiler:
inputs={"X": send_inputs}, inputs={"X": send_inputs},
outputs={"Out": send_outputs, outputs={"Out": send_outputs,
"RPCClient": rpc_client_var}, "RPCClient": rpc_client_var},
attrs={"endpoints": pserver_endpoints, attrs={
"epmap": eplist}) "endpoints": pserver_endpoints,
"epmap": eplist,
"sync_mode": self.sync_mode
})
# step4: Concat the parameters splits together after recv. # step4: Concat the parameters splits together after recv.
for varname, splited_var in param_var_mapping.iteritems(): for varname, splited_var in param_var_mapping.iteritems():
if len(splited_var) <= 1: if len(splited_var) <= 1:
...@@ -356,7 +364,7 @@ class DistributeTranspiler: ...@@ -356,7 +364,7 @@ class DistributeTranspiler:
type=v.type, type=v.type,
dtype=v.dtype, dtype=v.dtype,
shape=v.shape) shape=v.shape)
if self.trainer_num > 1: if self.sync_mode and self.trainer_num > 1:
for trainer_id in xrange(self.trainer_num): for trainer_id in xrange(self.trainer_num):
var = pserver_program.global_block().create_var( var = pserver_program.global_block().create_var(
name="%s.trainer_%d" % (orig_var_name, trainer_id), name="%s.trainer_%d" % (orig_var_name, trainer_id),
...@@ -402,13 +410,13 @@ class DistributeTranspiler: ...@@ -402,13 +410,13 @@ class DistributeTranspiler:
for op in self.optimize_ops: for op in self.optimize_ops:
if op.type == "scale": if op.type == "scale":
for in_name in op.input_arg_names: for in_name in op.input_arg_names:
if in_name.startswith("beta1_pow_acc") or\ if in_name.startswith("beta1_pow_acc") or \
in_name.startswith("beta2_pow_acc"): in_name.startswith("beta2_pow_acc"):
global_ops.append(op) global_ops.append(op)
def __append_optimize_op__(op, block): def __append_optimize_op__(op, block, grad_to_block_id):
if self._is_opt_op(op): if self._is_opt_op(op):
self._append_pserver_ops(block, op, endpoint, self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
default_main_program()) default_main_program())
else: else:
self._append_pserver_non_opt_ops(block, op) self._append_pserver_non_opt_ops(block, op)
...@@ -422,21 +430,22 @@ class DistributeTranspiler: ...@@ -422,21 +430,22 @@ class DistributeTranspiler:
self._append_pserver_non_opt_ops(lr_decay_block, op) self._append_pserver_non_opt_ops(lr_decay_block, op)
# append op to the current block # append op to the current block
grad_to_block_id = []
pre_block_idx = pserver_program.num_blocks - 1 pre_block_idx = pserver_program.num_blocks - 1
for idx, opt_op in enumerate(opt_op_on_pserver): for idx, opt_op in enumerate(opt_op_on_pserver):
per_opt_block = pserver_program.create_block(pre_block_idx) per_opt_block = pserver_program.create_block(pre_block_idx)
for _, op in enumerate(self.optimize_ops): for _, op in enumerate(self.optimize_ops):
# optimizer is connected to itself # optimizer is connected to itself
if ufind.is_connected(op, opt_op) and op not in global_ops: if ufind.is_connected(op, opt_op) and op not in global_ops:
__append_optimize_op__(op, per_opt_block) __append_optimize_op__(op, per_opt_block, grad_to_block_id)
# append global ops # append global ops
opt_state_block = None
if global_ops: if global_ops:
opt_state_block = pserver_program.create_block( opt_state_block = pserver_program.create_block(
pserver_program.num_blocks - 1) pserver_program.num_blocks - 1)
for glb_op in global_ops: for glb_op in global_ops:
__append_optimize_op__(glb_op, opt_state_block) __append_optimize_op__(glb_op, opt_state_block,
grad_to_block_id)
# NOT USED: single block version: # NOT USED: single block version:
# #
...@@ -472,7 +481,9 @@ class DistributeTranspiler: ...@@ -472,7 +481,9 @@ class DistributeTranspiler:
"OptimizeBlock": pserver_program.block(1), "OptimizeBlock": pserver_program.block(1),
"endpoint": endpoint, "endpoint": endpoint,
"Fanin": self.trainer_num, "Fanin": self.trainer_num,
"PrefetchBlock": prefetch_block "PrefetchBlock": prefetch_block,
"sync_mode": self.sync_mode,
"grad_to_block_id": grad_to_block_id
}) })
pserver_program.sync_with_cpp() pserver_program.sync_with_cpp()
...@@ -683,17 +694,6 @@ class DistributeTranspiler: ...@@ -683,17 +694,6 @@ class DistributeTranspiler:
self.table_name)], self.table_name)],
persistable=False) persistable=False)
# create grad vars in pserver program
table_grad_var = self.table_param_grad[1]
table_grad_list = [
pserver_program.global_block().create_var(
name="%s.trainer_%d.pserver_%d" %
(table_grad_var.name, index, pserver_index),
type=table_grad_var.type,
shape=table_grad_var.shape,
dtype=table_grad_var.dtype) for index in range(self.trainer_num)
]
# create table optimize block in pserver program # create table optimize block in pserver program
table_opt_op = [ table_opt_op = [
op for op in self.optimize_ops op for op in self.optimize_ops
...@@ -703,11 +703,24 @@ class DistributeTranspiler: ...@@ -703,11 +703,24 @@ class DistributeTranspiler:
# only support sgd now # only support sgd now
assert table_opt_op.type == "sgd" assert table_opt_op.type == "sgd"
# append sum op for table_grad_list if self.sync_mode:
table_opt_block.append_op( # create grad vars in pserver program
type="sum", table_grad_var = self.table_param_grad[1]
inputs={"X": table_grad_list}, table_grad_list = [
outputs={"Out": [grad_var]}) pserver_program.global_block().create_var(
name="%s.trainer_%d.pserver_%d" %
(table_grad_var.name, index, pserver_index),
type=table_grad_var.type,
shape=table_grad_var.shape,
dtype=table_grad_var.dtype)
for index in range(self.trainer_num)
]
# append sum op for table_grad_list
table_opt_block.append_op(
type="sum",
inputs={"X": table_grad_list},
outputs={"Out": [grad_var]})
lr_var = pserver_program.global_block().vars[table_opt_op.input( lr_var = pserver_program.global_block().vars[table_opt_op.input(
"LearningRate")[0]] "LearningRate")[0]]
...@@ -746,7 +759,7 @@ class DistributeTranspiler: ...@@ -746,7 +759,7 @@ class DistributeTranspiler:
for varname, splited in block_map.iteritems(): for varname, splited in block_map.iteritems():
orig_var = program.global_block().var(varname) orig_var = program.global_block().var(varname)
if len(splited) == 1: if len(splited) == 1:
if add_trainer_suffix: if self.sync_mode and add_trainer_suffix:
new_var_name = "%s.trainer_%d" % \ new_var_name = "%s.trainer_%d" % \
(orig_var.name, self.trainer_id) (orig_var.name, self.trainer_id)
program.global_block().rename_var(varname, new_var_name) program.global_block().rename_var(varname, new_var_name)
...@@ -770,7 +783,7 @@ class DistributeTranspiler: ...@@ -770,7 +783,7 @@ class DistributeTranspiler:
if len(orig_shape) >= 2: if len(orig_shape) >= 2:
splited_shape.extend(orig_shape[1:]) splited_shape.extend(orig_shape[1:])
new_var_name = "" new_var_name = ""
if add_trainer_suffix: if self.sync_mode and add_trainer_suffix:
new_var_name = "%s.block%d.trainer_%d" % \ new_var_name = "%s.block%d.trainer_%d" % \
(varname, i, self.trainer_id) (varname, i, self.trainer_id)
else: else:
...@@ -879,7 +892,7 @@ class DistributeTranspiler: ...@@ -879,7 +892,7 @@ class DistributeTranspiler:
return orig_var_name return orig_var_name
def _append_pserver_ops(self, optimize_block, opt_op, endpoint, def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
origin_program): grad_to_block_id, origin_program):
program = optimize_block.program program = optimize_block.program
pserver_block = program.global_block() pserver_block = program.global_block()
new_inputs = dict() new_inputs = dict()
...@@ -900,7 +913,9 @@ class DistributeTranspiler: ...@@ -900,7 +913,9 @@ class DistributeTranspiler:
return return
merged_var = \ merged_var = \
pserver_block.vars[self._orig_varname(grad_block.name)] pserver_block.vars[self._orig_varname(grad_block.name)]
if self.trainer_num > 1: grad_to_block_id.append(merged_var.name + ":" + str(
optimize_block.idx))
if self.sync_mode and self.trainer_num > 1:
vars2merge = [] vars2merge = []
for i in xrange(self.trainer_num): for i in xrange(self.trainer_num):
per_trainer_name = "%s.trainer_%d" % \ per_trainer_name = "%s.trainer_%d" % \
...@@ -918,6 +933,7 @@ class DistributeTranspiler: ...@@ -918,6 +933,7 @@ class DistributeTranspiler:
inputs={"X": merged_var}, inputs={"X": merged_var},
outputs={"Out": merged_var}, outputs={"Out": merged_var},
attrs={"scale": 1.0 / float(self.trainer_num)}) attrs={"scale": 1.0 / float(self.trainer_num)})
new_inputs[key] = merged_var new_inputs[key] = merged_var
elif key == "Param": elif key == "Param":
# param is already created on global program # param is already created on global program
......
...@@ -1070,16 +1070,25 @@ class Program(object): ...@@ -1070,16 +1070,25 @@ class Program(object):
for t in targets: for t in targets:
if not isinstance(t, Operator): if not isinstance(t, Operator):
if isinstance(t, Variable): if isinstance(t, Variable):
if t.op is None: # After transpiler processing, the op that output this
global_block = self.global_block() # variable maybe has been changed, so t.op is not reliable
for op in global_block.ops: # and we need to find the current op that generate this
if t.name in op.output_arg_names: # variable here.
t.op = op t.op = None
break global_block = self.global_block()
for idx, op in enumerate(global_block.ops):
if t.name in op.output_arg_names:
t.op = op
break
t = t.op t = t.op
if t is None:
raise ValueError(
"The target variable must have an "
"associated operator that generates it.")
else: else:
raise ValueError(("All targets of prune() can only be " raise ValueError("All targets of prune() can only be "
"Variable or Operator.")) "Variable or Operator.")
targets_idx.append([t.block.idx, t.idx]) targets_idx.append([t.block.idx, t.idx])
res = Program() res = Program()
......
...@@ -121,7 +121,60 @@ class InferenceTranspiler: ...@@ -121,7 +121,60 @@ class InferenceTranspiler:
# And a better solution will be considered later. # And a better solution will be considered later.
program = program.clone() program = program.clone()
def float16_transpile(self, program, place, scope=None):
'''
Transpile the program desc and cast the weights to float16 data type to
enable float16 inference.
Since the operator in a program desc will automatically choose the
right compute kernel to run based on the data type of the input tensor.
We actually don't need to change the program desc to run in float16 mode.
However, in this way, users who are used to feeding and fetching tensors
of float32 data type when running typical inference may find it confusing
and difficult to run inference in float16 mode as they need to convert
input data to float16 dtype and then convert the results back to float32
dtype to match the rest of code.
So this function appends cast ops to the program desc where necessary so
that users are able to run inference in float16 mode while providing input
tensor (feed_holder) of float data type and obtaining output tensor
(fetch_holder) of float data type.
Moreover, it is desired that when we have the scope and program desc to run
inference in float32 mode, we can use a single API to do the necessary
modification and then user can run float16 inference on the fly. To make
this happen, this function also create new parameters in the scope to have the
converted float16 weights and change the operators in program desc to use
these new parameters.
:param program: program to transpile
:type program: Program
:param place: inference place
:type place: Place
:param scope: inference scope
:type scope: Scope
'''
if scope is None:
scope = global_scope()
self.scope = scope
self.place = place
self.block = program.block(0)
self.input_map = {} # store the input names should be adjusted
self._modify_feed_fetch()
self._convert_param_to_float16()
self._adjust_input(skip=True)
self._remove_unused_var()
# TODO(luotao): use clone() method to flush the program.desc in force,
# since some large program.desc will not be flushed immediately.
# And a better solution will be considered later.
program = program.clone()
# ====================== private transpiler functions ===================== # ====================== private transpiler functions =====================
def _insert_bias_op(self, index, current_op, bn_op): def _insert_bias_op(self, index, current_op, bn_op):
''' '''
Construct elementwise_add operator for adding bias Construct elementwise_add operator for adding bias
...@@ -216,9 +269,27 @@ class InferenceTranspiler: ...@@ -216,9 +269,27 @@ class InferenceTranspiler:
# collect the renamed input # collect the renamed input
self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0] self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0]
def _adjust_input(self): def _adjust_input(self, skip=False):
'''
Change the input variable name in operators.
When we are in the process of modifying a program desc, we usually
replace some variables with some other variables, where we create
a dictionary input_map to record the one-to-one correspondence
between each old variable and the new one.
After that, this function will search all the operators that use the
old variables and change the info in op to use the new variables. There
maybe some exceptions to this rule when we are using the float16 transpiler
and insert cast ops to cast float32 variable to float16 one. After we
insert the cast op to cast var_1 to var_1_fp16, we don't want to change
the input of cast op to var_1_fp16 after using this function.
'''
skip_ops = {"cast"}
for i in range(len(self.block.ops)): for i in range(len(self.block.ops)):
current_op = self.block.ops[i] current_op = self.block.ops[i]
if skip and current_op.type in skip_ops:
continue
for input_arg in current_op.input_arg_names: for input_arg in current_op.input_arg_names:
if input_arg in self.input_map: if input_arg in self.input_map:
current_op.rename_input(input_arg, current_op.rename_input(input_arg,
...@@ -238,3 +309,138 @@ class InferenceTranspiler: ...@@ -238,3 +309,138 @@ class InferenceTranspiler:
for var in self.block.vars.keys(): for var in self.block.vars.keys():
if var not in args: if var not in args:
self.block.remove_var(var) self.block.remove_var(var)
def _modify_feed_fetch(self):
'''
Modify feed fetch op/vars for float16 inference.
For each feed op:
feed_op->feed_target_var
Change it to:
feed_op->feed_target_var->cast_op(from other dtype to float16)->tmp_var
For each fetch op:
fetch_target_var->fetch_op
Change it to:
tmp_var->cast_op(from float16 to other dtype)->fetch_target_var->fetch_op
:return: None
'''
def find_op(var):
# It is possible that var.op is not up to date after some
# modifications to program desc. Here we force to make it up to date.
var.op = None
for op in self.block.ops:
if var.name in op.output_arg_names:
var.op = op
break
if var.op is None:
raise ValueError("The target variable must have an "
"associated operator that generates it.")
i = 0
while i < len(self.block.ops):
cur_op = self.block.ops[i]
if cur_op.type == "feed":
var_name = cur_op.output("Out")[0]
tmp_var_name = var_name + ".fp16"
var = self.block.vars[var_name]
tmp_var = self.block.create_var(
name=tmp_var_name.encode('ascii'),
type=var.type,
dtype=core.VarDesc.VarType.FP16,
shape=var.shape,
persistable=var.persistable)
self.block.insert_op(
i + 1,
type="cast",
inputs={"X": var},
outputs={"Out": tmp_var},
attrs={
'in_dtype': int(var.dtype),
'out_dtype': int(tmp_var.dtype)
})
self.input_map[var_name] = tmp_var_name
i = i + 1
elif cur_op.type == "fetch":
var_name = cur_op.input("X")[0]
tmp_var_name = var_name + ".fp16"
var = self.block.vars[var_name]
tmp_var = self.block.create_var(
name=tmp_var_name.encode('ascii'),
type=var.type,
dtype=core.VarDesc.VarType.FP16,
shape=var.shape,
persistable=var.persistable)
find_op(var)
var.op.rename_output(var_name, tmp_var_name)
self.block.insert_op(
i,
type="cast",
inputs={"X": tmp_var},
outputs={"Out": var},
attrs={
'in_dtype': int(tmp_var.dtype),
'out_dtype': int(var.dtype)
})
i = i + 1
i = i + 1
def _convert_param_to_float16(self):
def _get_no_fp16_conversion_var_names():
'''
Get the set of input variable names that shouldn't be converted to float16.
When we want to run inference in float16 mode, most parameters need to be
firstly converted to float16. However, there are some parameters that
shouldn't be converted to float16 because the corresponding operator
requires float32 parameters even in float16 mode (when the input data is
of float16 data type). Currently, the only operator that has this exclusion
is the batch norm op.
:return: set of input variable names
:type var_names: set
'''
op_names = {'batch_norm'}
var_names = []
for op in self.block.ops:
if op.type in op_names:
var_names += op.input_arg_names
return set(var_names)
def _should_be_converted(var):
return var.persistable and \
var.name not in self.no_conversion_vars and \
var.type != core.VarDesc.VarType.FEED_MINIBATCH and \
var.type != core.VarDesc.VarType.FETCH_LIST
self.no_conversion_vars = _get_no_fp16_conversion_var_names()
conversion_var_list = filter(_should_be_converted,
self.block.vars.values())
for var in conversion_var_list:
fp16_var_name = var.name + ".fp16"
fp16_var = self.block.create_parameter(
name=fp16_var_name.encode('ascii'),
type=var.type,
dtype=core.VarDesc.VarType.FP16,
shape=var.shape)
# cast the data in the tensor of the original var to float16
# data type and store it in the tensor of the new float16 var
self.scope.var(fp16_var_name)
fp16_tensor = self.scope.find_var(fp16_var_name).get_tensor()
tensor = np.array(self.scope.find_var(var.name).get_tensor())
# After the old tensor data is converted to np.float16, view(np.uint16)
# is used so that the internal memory of the numpy array will be
# reinterpreted to be of np.uint16 data type, which is binded to fluid
# float16 data type via the help of pybind in tensor_py.h.
fp16_tensor.set(
tensor.astype(np.float16).view(np.uint16), self.place)
# old var will be replaced by the fp16 var in program desc
self.input_map[var.name] = fp16_var_name
self.block.remove_var(var.name)
...@@ -336,7 +336,7 @@ def save_inference_model(dirname, ...@@ -336,7 +336,7 @@ def save_inference_model(dirname,
if main_program is None: if main_program is None:
main_program = default_main_program() main_program = default_main_program()
copy_program = main_program copy_program = main_program.clone()
if not os.path.isdir(dirname): if not os.path.isdir(dirname):
os.makedirs(dirname) os.makedirs(dirname)
......
...@@ -79,6 +79,7 @@ __all__ = [ ...@@ -79,6 +79,7 @@ __all__ = [
'lrn', 'lrn',
'pad', 'pad',
'label_smooth', 'label_smooth',
'roi_pool',
] ]
...@@ -3759,3 +3760,53 @@ def label_smooth(label, ...@@ -3759,3 +3760,53 @@ def label_smooth(label,
outputs={"Out": smooth_label}, outputs={"Out": smooth_label},
attrs={"epsilon": float(epsilon)}) attrs={"epsilon": float(epsilon)})
return smooth_label return smooth_label
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
"""
Region of interest pooling (also known as RoI pooling) is to perform
is to perform max pooling on inputs of nonuniform sizes to obtain
fixed-size feature maps (e.g. 7*7).
The operator has three steps:
1. Dividing each region proposal into equal-sized sections with
the pooled_width and pooled_height
2. Finding the largest value in each section
3. Copying these max values to the output buffer
Args:
input (Variable): The input for ROI pooling.
rois (Variable): ROIs (Regions of Interest) to pool over. It should
be a 2-D one level LoTensor of shape [num_rois, 4].
The layout is [x1, y1, x2, y2], where (x1, y1)
is the top left coordinates, and (x2, y2) is the
bottom right coordinates. The num_rois is the
total number of ROIs in this batch data.
pooled_height (integer): The pooled output height. Default: 1
pooled_width (integer): The pooled output width. Default: 1
spatial_scale (float): Multiplicative spatial scale factor. To
translate ROI coords from their input scale
to the scale used when pooling. Default: 1.0
Returns:
pool_out (Variable): The output is a 4-D tensor of the shape
(num_rois, channels, pooled_h, pooled_w).
Examples:
pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
"""
helper = LayerHelper('roi_pool', **locals())
dtype = helper.input_dtype()
pool_out = helper.create_tmp_variable(dtype)
argmaxes = helper.create_tmp_variable(dtype='int32')
helper.append_op(
type="roi_pool",
inputs={"X": input,
"ROIs": rois},
outputs={"Out": pool_out,
"Argmax": argmaxes},
attrs={
"pooled_height": pooled_height,
"pooled_width": pooled_width,
"spatial_scale": spatial_scale
})
return pool_out
...@@ -193,10 +193,7 @@ def assign(input, output): ...@@ -193,10 +193,7 @@ def assign(input, output):
helper = LayerHelper('assign', **locals()) helper = LayerHelper('assign', **locals())
if isinstance(input, Variable): if isinstance(input, Variable):
helper.append_op( helper.append_op(
type='scale', type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
inputs={'X': [input]},
outputs={'Out': [output]},
attrs={'scale': 1.0})
elif isinstance(input, numpy.ndarray): elif isinstance(input, numpy.ndarray):
dtype = convert_np_dtype_to_dtype_(input.dtype) dtype = convert_np_dtype_to_dtype_(input.dtype)
if dtype == VarDesc.VarType.FP32: if dtype == VarDesc.VarType.FP32:
......
...@@ -252,6 +252,26 @@ def infer(use_cuda, save_dirname=None): ...@@ -252,6 +252,26 @@ def infer(use_cuda, save_dirname=None):
fetch_targets, exe, fetch_targets, exe,
inference_transpiler_program) inference_transpiler_program)
if use_cuda and fluid.core.is_float16_supported(place):
# Use float16_transpiler to speedup
fp16_transpiler_program = inference_transpiler_program.clone()
t.float16_transpile(fp16_transpiler_program, place)
fp16_results = exe.run(fp16_transpiler_program,
feed={feed_target_names[0]: tensor_img},
fetch_list=fetch_targets)
assert len(results[0]) == len(fp16_results[0])
for i in range(len(results[0])):
np.testing.assert_almost_equal(
results[0][i], fp16_results[0][i], decimal=2)
print("float16 infer results: ", fp16_results[0])
fluid.io.save_inference_model("float16_" + save_dirname,
feed_target_names, fetch_targets, exe,
fp16_transpiler_program)
def main(net_type, use_cuda, is_local=True): def main(net_type, use_cuda, is_local=True):
if use_cuda and not fluid.core.is_compiled_with_cuda(): if use_cuda and not fluid.core.is_compiled_with_cuda():
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
import unittest import unittest
import numpy as np import numpy as np
import numpy.random as random
import sys import sys
import math import math
from op_test import OpTest from op_test import OpTest
...@@ -25,14 +26,27 @@ class TestIOUSimilarityOp(OpTest): ...@@ -25,14 +26,27 @@ class TestIOUSimilarityOp(OpTest):
def setUp(self): def setUp(self):
self.op_type = "iou_similarity" self.op_type = "iou_similarity"
self.boxes1 = np.array( self.boxes1 = random.rand(2, 4).astype('float32')
[[4.0, 3.0, 7.0, 5.0], [5.0, 6.0, 10.0, 7.0]]).astype('float32') self.boxes2 = random.rand(3, 4).astype('float32')
self.boxes2 = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0], self.output = random.rand(2, 3).astype('float32')
[0.0, 0.0, 20.0, 20.0]]).astype('float32') for row in range(self.boxes1.shape[0]):
self.output = np.array( for col in range(self.boxes2.shape[0]):
[[2.0 / 16.0, 0, 6.0 / 400.0], xmin1, ymin1, xmax1, ymax1 = self.boxes1[row]
[1.0 / 16.0, 0.0, 5.0 / 400.0]]).astype('float32') xmin2, ymin2, xmax2, ymax2 = self.boxes2[col]
area1 = (ymax1 - ymin1) * (xmax1 - xmin1)
area2 = (ymax2 - ymin2) * (xmax2 - xmin2)
inter_xmax = min(xmax1, xmax2)
inter_ymax = min(ymax1, ymax2)
inter_xmin = max(xmin1, xmin2)
inter_ymin = max(ymin1, ymin2)
inter_height = inter_ymax - inter_ymin
inter_width = inter_xmax - inter_xmin
inter_height = max(inter_height, 0)
inter_width = max(inter_width, 0)
inter_area = inter_width * inter_height
union_area = area1 + area2 - inter_area
sim_score = inter_area / union_area
self.output[row, col] = sim_score
self.inputs = {'X': self.boxes1, 'Y': self.boxes2} self.inputs = {'X': self.boxes1, 'Y': self.boxes2}
self.outputs = {'Out': self.output} self.outputs = {'Out': self.output}
......
...@@ -359,6 +359,16 @@ class TestBook(unittest.TestCase): ...@@ -359,6 +359,16 @@ class TestBook(unittest.TestCase):
self.assertIsNotNone(indices) self.assertIsNotNone(indices)
print(str(program)) print(str(program))
def test_roi_pool(self):
program = Program()
with program_guard(program):
x = layers.data(name="x", shape=[256, 30, 30], dtype="float32")
rois = layers.data(
name="rois", shape=[4], dtype="float32", lod_level=1)
output = layers.roi_pool(x, rois, 7, 7, 0.6)
self.assertIsNotNone(output)
print(str(program))
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -25,7 +25,7 @@ class TestROIPoolOp(OpTest): ...@@ -25,7 +25,7 @@ class TestROIPoolOp(OpTest):
self.make_rois() self.make_rois()
self.calc_roi_pool() self.calc_roi_pool()
self.inputs = {'X': self.x, 'ROIs': self.rois} self.inputs = {'X': self.x, 'ROIs': (self.rois[:, 1:5], self.rois_lod)}
self.attrs = { self.attrs = {
'spatial_scale': self.spatial_scale, 'spatial_scale': self.spatial_scale,
...@@ -36,7 +36,7 @@ class TestROIPoolOp(OpTest): ...@@ -36,7 +36,7 @@ class TestROIPoolOp(OpTest):
self.outputs = {'Out': self.outs, 'Argmax': self.argmaxes} self.outputs = {'Out': self.outs, 'Argmax': self.argmaxes}
def init_test_case(self): def init_test_case(self):
self.batch_size = 5 self.batch_size = 3
self.channels = 3 self.channels = 3
self.height = 6 self.height = 6
self.width = 4 self.width = 4
...@@ -47,7 +47,6 @@ class TestROIPoolOp(OpTest): ...@@ -47,7 +47,6 @@ class TestROIPoolOp(OpTest):
self.spatial_scale = 1.0 / 4.0 self.spatial_scale = 1.0 / 4.0
self.pooled_height = 2 self.pooled_height = 2
self.pooled_width = 2 self.pooled_width = 2
self.rois_num = 2
self.x = np.random.random(self.x_dim).astype('float32') self.x = np.random.random(self.x_dim).astype('float32')
...@@ -106,20 +105,24 @@ class TestROIPoolOp(OpTest): ...@@ -106,20 +105,24 @@ class TestROIPoolOp(OpTest):
def make_rois(self): def make_rois(self):
rois = [] rois = []
batch_ids = np.random.randint(0, self.batch_size, size=self.rois_num) self.rois_lod = [[]]
for i in range(self.rois_num): for bno in range(self.batch_size):
x1 = np.random.random_integers( self.rois_lod[0].append(len(rois))
0, self.width / self.spatial_scale - self.pooled_width) for i in range(bno + 1):
y1 = np.random.random_integers( x1 = np.random.random_integers(
0, self.height / self.spatial_scale - self.pooled_height) 0, self.width / self.spatial_scale - self.pooled_width)
y1 = np.random.random_integers(
x2 = np.random.random_integers(x1 + self.pooled_width, 0, self.height / self.spatial_scale - self.pooled_height)
self.width / self.spatial_scale)
y2 = np.random.random_integers(y1 + self.pooled_height, x2 = np.random.random_integers(x1 + self.pooled_width,
self.height / self.spatial_scale) self.width / self.spatial_scale)
y2 = np.random.random_integers(y1 + self.pooled_height,
roi = [batch_ids[i], x1, y1, x2, y2] self.height / self.spatial_scale)
rois.append(roi)
roi = [bno, x1, y1, x2, y2]
rois.append(roi)
self.rois_lod[0].append(len(rois))
self.rois_num = len(rois)
self.rois = np.array(rois).astype("int64") self.rois = np.array(rois).astype("int64")
def setUp(self): def setUp(self):
......
...@@ -640,6 +640,7 @@ def start_server(args): ...@@ -640,6 +640,7 @@ def start_server(args):
elif request_path == "/cleanup": elif request_path == "/cleanup":
self._set_headers() self._set_headers()
logging.info("Received request to cleanup cluster") logging.info("Received request to cleanup cluster")
args.no_clean_up = False
cleanup(args.task_name) cleanup(args.task_name)
self.wfile.write("cleanup in progress") self.wfile.write("cleanup in progress")
......
#!/bin/bash #!/bin/bash
DEB="nccl-repo-ubuntu1604-2.1.4-ga-cuda8.0_1-1_amd64.deb" VERSION=$(nvcc --version | grep release | grep -oEi "release ([0-9]+)\.([0-9])"| sed "s/release //")
if [ "$VERSION" == "9.0" ]; then
DEB="nccl-repo-ubuntu1604-2.1.15-ga-cuda9.0_1-1_amd64.deb"
URL="http://nccl2-deb.gz.bcebos.com/nccl-repo-ubuntu1604-2.1.15-ga-cuda9.0_1-1_amd64.deb"
else
DEB="nccl-repo-ubuntu1604-2.1.15-ga-cuda8.0_1-1_amd64.deb"
URL="http://nccl2-deb.gz.bcebos.com/nccl-repo-ubuntu1604-2.1.15-ga-cuda8.0_1-1_amd64.deb"
fi
DIR="/nccl2" DIR="/nccl2"
mkdir -p $DIR mkdir -p $DIR
# we cached the nccl2 deb package in BOS, so we can download it with wget # we cached the nccl2 deb package in BOS, so we can download it with wget
# install nccl2: http://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#down # install nccl2: http://docs.nvidia.com/deeplearning/sdk/nccl-install-guide/index.html#down
wget -O $DIR/$DEB \ wget -O $DIR/$DEB $URL
"http://nccl2-deb.gz.bcebos.com/nccl-repo-ubuntu1604-2.1.4-ga-cuda8.0_1-1_amd64.deb?responseContentDisposition=attachment"
cd $DIR && ar x $DEB && tar xf data.tar.xz cd $DIR && ar x $DEB && tar xf data.tar.xz
DEBS=$(find ./var/ -name "*.deb") DEBS=$(find ./var/ -name "*.deb")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册