Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f3badacd
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
f3badacd
编写于
11月 01, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into fea/jit/gen
上级
a53b1b0b
d186e743
变更
44
隐藏空白更改
内联
并排
Showing
44 changed file
with
651 addition
and
216 deletion
+651
-216
CMakeLists.txt
CMakeLists.txt
+0
-1
paddle/CMakeLists.txt
paddle/CMakeLists.txt
+1
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+3
-1
paddle/fluid/CMakeLists.txt
paddle/fluid/CMakeLists.txt
+3
-5
paddle/fluid/framework/details/all_reduce_op_handle.cc
paddle/fluid/framework/details/all_reduce_op_handle.cc
+3
-3
paddle/fluid/framework/details/broadcast_op_handle.h
paddle/fluid/framework/details/broadcast_op_handle.h
+2
-1
paddle/fluid/framework/details/computation_op_handle.cc
paddle/fluid/framework/details/computation_op_handle.cc
+1
-1
paddle/fluid/framework/details/data_balance_op_handle.cc
paddle/fluid/framework/details/data_balance_op_handle.cc
+3
-3
paddle/fluid/framework/details/gather_op_handle.cc
paddle/fluid/framework/details/gather_op_handle.cc
+2
-2
paddle/fluid/framework/details/op_handle_base.cc
paddle/fluid/framework/details/op_handle_base.cc
+1
-1
paddle/fluid/framework/details/reduce_op_handle.cc
paddle/fluid/framework/details/reduce_op_handle.cc
+1
-1
paddle/fluid/framework/details/reduce_op_handle.h
paddle/fluid/framework/details/reduce_op_handle.h
+2
-1
paddle/fluid/framework/details/rpc_op_handle.cc
paddle/fluid/framework/details/rpc_op_handle.cc
+1
-1
paddle/fluid/framework/details/scale_loss_grad_op_handle.cc
paddle/fluid/framework/details/scale_loss_grad_op_handle.cc
+4
-4
paddle/fluid/framework/lod_tensor_array.h
paddle/fluid/framework/lod_tensor_array.h
+0
-74
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+1
-1
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+1
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+2
-4
paddle/fluid/inference/api/CMakeLists.txt
paddle/fluid/inference/api/CMakeLists.txt
+0
-2
paddle/fluid/inference/api/api_impl_tester.cc
paddle/fluid/inference/api/api_impl_tester.cc
+4
-4
paddle/fluid/inference/api/demo_ci/simple_on_word2vec.cc
paddle/fluid/inference/api/demo_ci/simple_on_word2vec.cc
+6
-2
paddle/fluid/operators/add_position_encoding_op.cc
paddle/fluid/operators/add_position_encoding_op.cc
+97
-0
paddle/fluid/operators/add_position_encoding_op.h
paddle/fluid/operators/add_position_encoding_op.h
+105
-0
paddle/fluid/operators/gather_op.cc
paddle/fluid/operators/gather_op.cc
+4
-2
paddle/fluid/operators/gather_op.cu
paddle/fluid/operators/gather_op.cu
+8
-2
paddle/fluid/operators/math/sequence_pooling.cc
paddle/fluid/operators/math/sequence_pooling.cc
+44
-4
paddle/fluid/operators/math/sequence_pooling.cu
paddle/fluid/operators/math/sequence_pooling.cu
+1
-1
paddle/fluid/operators/math/sequence_pooling.h
paddle/fluid/operators/math/sequence_pooling.h
+1
-1
paddle/fluid/operators/sequence_pool_op.cc
paddle/fluid/operators/sequence_pool_op.cc
+1
-0
paddle/fluid/operators/sequence_pool_op.h
paddle/fluid/operators/sequence_pool_op.h
+11
-6
paddle/fluid/operators/sum_op.cc
paddle/fluid/operators/sum_op.cc
+6
-4
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+17
-19
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+3
-4
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+3
-5
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+103
-3
python/paddle/fluid/metrics.py
python/paddle/fluid/metrics.py
+1
-1
python/paddle/fluid/tests/CMakeLists.txt
python/paddle/fluid/tests/CMakeLists.txt
+0
-2
python/paddle/fluid/tests/book/high-level-api/image_classification/CMakeLists.txt
...s/book/high-level-api/image_classification/CMakeLists.txt
+16
-4
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+8
-1
python/paddle/fluid/tests/unittests/dist_mnist.py
python/paddle/fluid/tests/unittests/dist_mnist.py
+4
-2
python/paddle/fluid/tests/unittests/test_add_position_encoding_op.py
...le/fluid/tests/unittests/test_add_position_encoding_op.py
+134
-0
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+26
-41
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
+3
-2
python/paddle/fluid/tests/unittests/test_seq_pool.py
python/paddle/fluid/tests/unittests/test_seq_pool.py
+14
-0
未找到文件。
CMakeLists.txt
浏览文件 @
f3badacd
...
...
@@ -68,7 +68,6 @@ option(REPLACE_ENFORCE_GLOG "Replace PADDLE_ENFORCE with glog/CHECK for better d
option
(
WITH_ANAKIN
"Compile with Anakin library"
OFF
)
option
(
WITH_GRPC
"Use grpc as the default rpc framework"
${
WITH_DISTRIBUTE
}
)
option
(
WITH_BRPC_RDMA
"Use brpc rdma as the rpc protocal"
OFF
)
option
(
WITH_INFERENCE
"Compile fluid inference library"
ON
)
option
(
ON_INFER
"Turn on inference optimization."
OFF
)
option
(
WITH_INFERENCE_API_TEST
"Test fluid inference high-level api interface"
OFF
)
option
(
WITH_SYSTEM_BLAS
"Use system blas library"
OFF
)
...
...
paddle/CMakeLists.txt
浏览文件 @
f3badacd
...
...
@@ -24,6 +24,7 @@ if(NOT WITH_FLUID_ONLY)
endif
()
add_subdirectory
(
testing
)
set
(
PYTHON_TESTS_DIR
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/tests CACHE INTERNAL
"python tests directory"
)
if
(
NOT MOBILE_INFERENCE AND NOT RPI AND NOT WITH_C_API
)
add_subdirectory
(
fluid
)
endif
()
paddle/fluid/API.spec
浏览文件 @
f3badacd
...
...
@@ -64,7 +64,7 @@ paddle.fluid.layers.chunk_eval ArgSpec(args=['input', 'label', 'chunk_scheme', '
paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(3, 1, None, None, None, None, None))
paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None))
paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type'
], varargs=None, keywords=None, defaults=None
)
paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type'
, 'is_test'], varargs=None, keywords=None, defaults=(False,)
)
paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.layers.softmax ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(True, None))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None))
...
...
@@ -177,6 +177,8 @@ paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, k
paddle.fluid.layers.sequence_reverse ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.affine_channel ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None))
paddle.fluid.layers.hash ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None))
paddle.fluid.layers.log_loss ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None))
paddle.fluid.layers.add_position_encoding ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/CMakeLists.txt
浏览文件 @
f3badacd
...
...
@@ -9,8 +9,6 @@ add_subdirectory(pybind)
add_subdirectory
(
recordio
)
endif
(
NOT WIN32
)
if
(
WITH_INFERENCE
)
# NOTE: please add subdirectory inference at last.
add_subdirectory
(
inference
)
add_subdirectory
(
train
)
endif
()
# NOTE: please add subdirectory inference at last.
add_subdirectory
(
inference
)
add_subdirectory
(
train
)
paddle/fluid/framework/details/all_reduce_op_handle.cc
浏览文件 @
f3badacd
...
...
@@ -34,7 +34,7 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
nccl_ctxs_
(
ctxs
)
{
if
(
nccl_ctxs_
)
{
for
(
auto
&
p
:
places_
)
{
this
->
dev_ctxes_
[
p
]
=
nccl_ctxs_
->
DevCtx
(
p
);
this
->
SetDeviceContext
(
p
,
nccl_ctxs_
->
DevCtx
(
p
)
);
}
}
}
...
...
@@ -46,7 +46,7 @@ AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
#endif
void
AllReduceOpHandle
::
RunImpl
()
{
platform
::
RecordEvent
record_event
(
Name
(),
dev_ctxes_
.
begin
()
->
second
);
platform
::
RecordEvent
record_event
(
Name
(),
dev_ctxes_
.
c
begin
()
->
second
);
if
(
NoDummyInputSize
()
==
1
)
{
return
;
// No need to all reduce when GPU count = 1;
...
...
@@ -127,7 +127,7 @@ void AllReduceOpHandle::RunImpl() {
*
local_scopes_
[
i
]
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
auto
&
p
=
places_
[
i
];
auto
*
var
=
scope
.
FindVar
(
out_var_handles
[
i
]
->
name_
);
auto
*
dev_ctx
=
dev_ctxes_
[
p
]
;
auto
*
dev_ctx
=
dev_ctxes_
.
at
(
p
)
;
RunAndRecordEvent
(
p
,
[
&
trg
,
var
,
dev_ctx
,
p
]
{
auto
&
tensor_gpu
=
*
var
->
GetMutable
<
framework
::
LoDTensor
>
();
...
...
paddle/fluid/framework/details/broadcast_op_handle.h
浏览文件 @
f3badacd
...
...
@@ -44,7 +44,8 @@ struct BroadcastOpHandle : public OpHandleBase {
nccl_ctxs_
(
nccl_ctxs
)
{
if
(
nccl_ctxs_
)
{
for
(
auto
&
p_ctx
:
nccl_ctxs_
->
contexts_
)
{
dev_ctxes_
[
platform
::
CUDAPlace
(
p_ctx
.
first
)]
=
p_ctx
.
second
.
ctx_
.
get
();
this
->
SetDeviceContext
(
platform
::
CUDAPlace
(
p_ctx
.
first
),
p_ctx
.
second
.
ctx_
.
get
());
}
}
}
...
...
paddle/fluid/framework/details/computation_op_handle.cc
浏览文件 @
f3badacd
...
...
@@ -37,7 +37,7 @@ void ComputationOpHandle::RunImpl() {
bool
ComputationOpHandle
::
NeedWait
(
VarHandleBase
*
in_var
)
{
bool
need_wait
=
in_var
&&
in_var
->
GeneratedOp
()
&&
in_var
->
GeneratedOp
()
->
DeviceContext
(
place_
)
!=
dev_ctxes_
[
place_
]
;
in_var
->
GeneratedOp
()
->
DeviceContext
(
place_
)
!=
dev_ctxes_
.
at
(
place_
)
;
return
need_wait
;
}
...
...
paddle/fluid/framework/details/data_balance_op_handle.cc
浏览文件 @
f3badacd
...
...
@@ -28,7 +28,7 @@ DataBalanceOpHandle::DataBalanceOpHandle(
:
OpHandleBase
(
node
),
local_scopes_
(
local_scopes
),
places_
(
places
)
{
if
(
ctxs
)
{
for
(
auto
&
p
:
places_
)
{
this
->
dev_ctxes_
[
p
]
=
ctxs
->
DevCtx
(
p
);
this
->
SetDeviceContext
(
p
,
ctxs
->
DevCtx
(
p
)
);
}
}
}
...
...
@@ -89,8 +89,8 @@ void DataBalanceOpHandle::RunImpl() {
PADDLE_ENFORCE_GT
(
places_
.
size
(),
1
,
"Data balance can only be enabled when the number of "
"places to run larger than 1."
);
auto
in_var_handles
=
DynamicCast
<
VarHandle
>
(
inputs_
);
auto
out_var_handles
=
DynamicCast
<
VarHandle
>
(
outputs_
);
auto
in_var_handles
=
DynamicCast
<
VarHandle
>
(
this
->
Inputs
()
);
auto
out_var_handles
=
DynamicCast
<
VarHandle
>
(
this
->
Outputs
()
);
PADDLE_ENFORCE
(
in_var_handles
.
size
()
%
places_
.
size
()
==
0
);
PADDLE_ENFORCE_EQ
(
in_var_handles
.
size
(),
out_var_handles
.
size
(),
...
...
paddle/fluid/framework/details/gather_op_handle.cc
浏览文件 @
f3badacd
...
...
@@ -36,7 +36,7 @@ void GatherOpHandle::RunImpl() {
VarHandle
*
out_var_handle
;
{
auto
out_var_handles
=
DynamicCast
<
VarHandle
>
(
outputs_
);
auto
out_var_handles
=
DynamicCast
<
VarHandle
>
(
this
->
Outputs
()
);
PADDLE_ENFORCE_EQ
(
out_var_handles
.
size
(),
1
,
"The number of output should be one."
);
out_var_handle
=
out_var_handles
.
front
();
...
...
@@ -99,7 +99,7 @@ void GatherOpHandle::RunImpl() {
Tensor
*
out_tensor
=
out_value
->
mutable_value
();
// copy
auto
dev_ctx
=
dev_ctxes_
[
out_var_handle
->
place_
]
;
auto
dev_ctx
=
dev_ctxes_
.
at
(
out_var_handle
->
place_
)
;
RunAndRecordEvent
(
out_var_handle
->
place_
,
[
in_tensors
,
out_tensor
,
&
dev_ctx
,
t_out_p
]
{
int
s
=
0
,
e
=
0
;
...
...
paddle/fluid/framework/details/op_handle_base.cc
浏览文件 @
f3badacd
...
...
@@ -103,7 +103,7 @@ void OpHandleBase::WaitInputVarGenerated() {
void
OpHandleBase
::
WaitInputVarGenerated
(
const
platform
::
Place
&
place
)
{
for
(
auto
*
in
:
inputs_
)
{
if
(
NeedWait
(
in
))
{
in
->
GeneratedOp
()
->
RecordWaitEventOnCtx
(
dev_ctxes_
[
place
]
);
in
->
GeneratedOp
()
->
RecordWaitEventOnCtx
(
dev_ctxes_
.
at
(
place
)
);
}
}
}
...
...
paddle/fluid/framework/details/reduce_op_handle.cc
浏览文件 @
f3badacd
...
...
@@ -27,7 +27,7 @@ namespace framework {
namespace
details
{
void
ReduceOpHandle
::
RunImpl
()
{
platform
::
RecordEvent
record_event
(
Name
(),
dev_ctxes_
.
begin
()
->
second
);
platform
::
RecordEvent
record_event
(
Name
(),
dev_ctxes_
.
c
begin
()
->
second
);
if
(
places_
.
size
()
==
1
)
return
;
// the input and output may have dummy var.
...
...
paddle/fluid/framework/details/reduce_op_handle.h
浏览文件 @
f3badacd
...
...
@@ -46,7 +46,8 @@ struct ReduceOpHandle : public OpHandleBase {
nccl_ctxs_
(
nccl_ctxs
)
{
if
(
nccl_ctxs_
)
{
for
(
auto
&
p_ctx
:
nccl_ctxs_
->
contexts_
)
{
dev_ctxes_
[
platform
::
CUDAPlace
(
p_ctx
.
first
)]
=
p_ctx
.
second
.
ctx_
.
get
();
this
->
SetDeviceContext
(
platform
::
CUDAPlace
(
p_ctx
.
first
),
p_ctx
.
second
.
ctx_
.
get
());
}
}
}
...
...
paddle/fluid/framework/details/rpc_op_handle.cc
浏览文件 @
f3badacd
...
...
@@ -38,7 +38,7 @@ void RPCOpHandle::RunImpl() {
continue
;
}
if
(
in
->
GeneratedOp
())
{
in
->
GeneratedOp
()
->
RecordWaitEventOnCtx
(
dev_ctxes_
[
p
]
);
in
->
GeneratedOp
()
->
RecordWaitEventOnCtx
(
dev_ctxes_
.
at
(
p
)
);
}
}
auto
&
tmp_scope
=
local_scope_
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
();
...
...
paddle/fluid/framework/details/scale_loss_grad_op_handle.cc
浏览文件 @
f3badacd
...
...
@@ -27,7 +27,7 @@ ScaleLossGradOpHandle::ScaleLossGradOpHandle(ir::Node *node, size_t num_dev,
coeff_
(
static_cast
<
float
>
(
1.0
/
num_dev
)),
scope_
(
scope
),
place_
(
place
)
{
dev_ctxes_
[
place_
]
=
dev_ctx
;
this
->
SetDeviceContext
(
place_
,
dev_ctx
)
;
}
ScaleLossGradOpHandle
::~
ScaleLossGradOpHandle
()
{}
...
...
@@ -46,9 +46,9 @@ void ScaleLossGradOpHandle::RunImpl() {
}
else
{
#ifdef PADDLE_WITH_CUDA
this
->
RunAndRecordEvent
([
&
]
{
auto
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctxes_
[
place_
]
)
->
stream
();
auto
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
this
->
dev_ctxes_
.
at
(
place_
)
)
->
stream
();
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place_
),
tmp
,
platform
::
CPUPlace
(),
&
coeff_
,
sizeof
(
float
),
stream
);
VLOG
(
10
)
<<
place_
<<
"RUN Scale loss grad op"
;
...
...
paddle/fluid/framework/lod_tensor_array.h
浏览文件 @
f3badacd
...
...
@@ -19,81 +19,7 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
// NOTE The vector<LoDTensor> can't be replaced with the class LoDTensorArray
// directly, because there are many vector<LoDTensor> used accross the project,
// and some of them are treated as LoDTensorArray.
#if !defined(PADDLE_ON_INFERENCE)
using
LoDTensorArray
=
std
::
vector
<
LoDTensor
>
;
#else // !PADDLE_ON_INFERENCE
#pragma message "LoDTensorArray is replaced with the inference one."
/*
* A LoDTensorArray which will not deallocate buffer when resized, fix the data
* diff in inference, and more performance friendly in the concurrency
* scenerios.
*/
class
LoDTensorArray
{
public:
LoDTensorArray
()
=
default
;
using
iterator
=
std
::
vector
<
LoDTensor
>::
iterator
;
using
const_iterator
=
std
::
vector
<
LoDTensor
>::
const_iterator
;
const_iterator
begin
()
const
{
return
array_
.
begin
();
}
const_iterator
end
()
const
{
return
array_
.
begin
()
+
size_
;
}
iterator
begin
()
{
return
array_
.
begin
();
}
iterator
end
()
{
return
array_
.
begin
()
+
size_
;
}
void
push_back
(
const
LoDTensor
&
x
)
{
if
(
size_
<
array_
.
size
())
{
array_
[
size_
++
]
=
x
;
}
else
{
array_
.
push_back
(
x
);
++
size_
;
}
}
void
resize
(
size_t
size
)
{
if
(
array_
.
size
()
<
size
)
{
array_
.
resize
(
size
);
}
size_
=
size
;
}
void
emplace_back
()
{
array_
.
emplace_back
();
}
void
emplace_back
(
LoDTensor
&&
x
)
{
array_
.
emplace_back
(
std
::
move
(
x
));
}
LoDTensor
&
back
()
{
return
array_
.
back
();
}
size_t
space
()
const
{
return
array_
.
size
();
}
void
reserve
(
size_t
size
)
{
// Naive warning to tell user this array might be to large. The memory and
// buffer used by this TensorArray will not be deleted during the training
// and inference phase, so attention not to make it expand too long.
if
(
size
>
800UL
)
{
LOG
(
WARNING
)
<<
"TensorArray has more than 800 items"
;
}
array_
.
reserve
(
size
);
}
bool
empty
()
const
{
return
size_
==
0UL
;
}
void
clear
()
{
size_
=
0UL
;
}
LoDTensor
&
operator
[](
size_t
id
)
{
return
array_
[
id
];
}
const
LoDTensor
&
operator
[](
size_t
id
)
const
{
return
array_
[
id
];
}
LoDTensor
&
at
(
size_t
id
)
{
return
array_
.
at
(
id
);
}
const
LoDTensor
&
at
(
size_t
id
)
const
{
return
array_
.
at
(
id
);
}
size_t
size
()
const
{
return
size_
;
}
private:
size_t
size_
{
0
};
std
::
vector
<
LoDTensor
>
array_
;
};
#endif // !PADDLE_ON_INFERENCE
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/operator.cc
浏览文件 @
f3badacd
...
...
@@ -358,7 +358,7 @@ static bool VarIsTensor(const Variable* var) {
return
var
->
IsType
<
LoDTensor
>
()
||
var
->
IsType
<
SelectedRows
>
();
}
static
const
Tensor
*
GetTensorFromVar
(
Variable
*
var
)
{
const
Tensor
*
GetTensorFromVar
(
Variable
*
var
)
{
if
(
var
->
IsType
<
LoDTensor
>
())
{
return
var
->
GetMutable
<
LoDTensor
>
();
}
else
if
(
var
->
IsType
<
SelectedRows
>
())
{
...
...
paddle/fluid/framework/operator.h
浏览文件 @
f3badacd
...
...
@@ -63,6 +63,7 @@ inline std::string GradVarName(const std::string& var_name) {
}
proto
::
VarType
::
Type
GetDataTypeOfVar
(
const
Variable
*
var
);
const
Tensor
*
GetTensorFromVar
(
Variable
*
var
);
class
OperatorBase
;
class
ExecutionContext
;
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
f3badacd
...
...
@@ -303,10 +303,8 @@ void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
}
ParallelExecutor
::~
ParallelExecutor
()
{
const
auto
dev_ctxs
=
platform
::
DeviceContextPool
::
Instance
().
GetAllDeviceContexts
();
for
(
auto
&
dev_ctx
:
dev_ctxs
)
{
dev_ctx
->
Wait
();
for
(
auto
&
p
:
member_
->
places_
)
{
platform
::
DeviceContextPool
::
Instance
().
Get
(
p
)
->
Wait
();
}
if
(
member_
->
own_local_scope_
)
{
...
...
paddle/fluid/inference/api/CMakeLists.txt
浏览文件 @
f3badacd
...
...
@@ -61,8 +61,6 @@ cc_test(test_paddle_inference_api
inference_api_test
(
test_api_impl SRC api_impl_tester.cc
ARGS test_word2vec test_image_classification
)
set
(
PYTHON_TESTS_DIR
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/tests
)
cc_test
(
test_analysis_predictor SRCS analysis_predictor_tester.cc DEPS analysis_predictor
${
inference_deps
}
paddle_inference_api
ARGS --dirname=
${
PYTHON_TESTS_DIR
}
/book
)
...
...
paddle/fluid/inference/api/api_impl_tester.cc
浏览文件 @
f3badacd
...
...
@@ -22,9 +22,9 @@ limitations under the License. */
#include "paddle/fluid/inference/tests/test_helper.h"
#ifdef __clang__
#define ACC_DIFF 4e-
3
#define ACC_DIFF 4e-
2
#else
#define ACC_DIFF 1e-
3
#define ACC_DIFF 1e-
2
#endif
DEFINE_string
(
dirname
,
""
,
"Directory of the inference model."
);
...
...
@@ -187,7 +187,7 @@ void MainThreadsWord2Vec(bool use_gpu) {
std
::
vector
<
std
::
thread
>
threads
;
for
(
int
tid
=
0
;
tid
<
num_jobs
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
auto
predictor
=
main_predictor
->
Clone
(
);
auto
predictor
=
CreatePaddlePredictor
(
config
);
auto
&
local_inputs
=
paddle_tensor_feeds
[
tid
];
std
::
vector
<
PaddleTensor
>
local_outputs
;
ASSERT_TRUE
(
predictor
->
Run
(
local_inputs
,
&
local_outputs
));
...
...
@@ -245,7 +245,7 @@ void MainThreadsImageClassification(bool use_gpu) {
std
::
vector
<
std
::
thread
>
threads
;
for
(
int
tid
=
0
;
tid
<
num_jobs
;
++
tid
)
{
threads
.
emplace_back
([
&
,
tid
]()
{
auto
predictor
=
main_predictor
->
Clone
(
);
auto
predictor
=
CreatePaddlePredictor
(
config
);
auto
&
local_inputs
=
paddle_tensor_feeds
[
tid
];
std
::
vector
<
PaddleTensor
>
local_outputs
;
ASSERT_TRUE
(
predictor
->
Run
(
local_inputs
,
&
local_outputs
));
...
...
paddle/fluid/inference/api/demo_ci/simple_on_word2vec.cc
浏览文件 @
f3badacd
...
...
@@ -70,8 +70,12 @@ void Main(bool use_gpu) {
// The outputs' buffers are in CPU memory.
for
(
size_t
i
=
0
;
i
<
std
::
min
(
static_cast
<
size_t
>
(
5
),
num_elements
);
i
++
)
{
CHECK_NEAR
(
static_cast
<
float
*>
(
outputs
.
front
().
data
.
data
())[
i
],
result
[
i
],
0.001
);
// Here will result random fail, for that the model is trained by CI, the
// train phase is not stable, so the result will be random.
// TODO(Superjomn) will restore after the model is upload.
// CHECK_NEAR(static_cast<float*>(outputs.front().data.data())[i],
// result[i],
// 0.001);
}
}
}
...
...
paddle/fluid/operators/add_position_encoding_op.cc
0 → 100644
浏览文件 @
f3badacd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/add_position_encoding_op.h"
namespace
paddle
{
namespace
operators
{
class
AddPositionEncodingOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"X(Input) of add_position_encoding_op should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Out(Output) of add_position_encoding_op should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
ctx
->
SetOutputDim
(
"Out"
,
x_dims
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
class
AddPositionEncodingOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"X(Input) must not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Out"
),
"Out must not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Out@GRAD must not be null."
);
auto
out_dims
=
ctx
->
GetInputDim
(
"Out"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
out_dims
);
}
}
};
class
AddPositionEncodingOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"Input of AddPositionEncoding operator"
);
AddOutput
(
"Out"
,
"Output of AddPositionEncoding operator"
);
AddAttr
<
float
>
(
"alpha"
,
"The scale of Original Embedding."
)
.
SetDefault
(
1.0
f
)
.
AddCustomChecker
([](
const
float
&
alpha
)
{
PADDLE_ENFORCE
(
alpha
>=
0.0
f
,
"'alpha' must be above 0.0."
);
});
AddAttr
<
float
>
(
"beta"
,
"The scale of Position Embedding."
)
.
SetDefault
(
1.0
f
)
.
AddCustomChecker
([](
const
float
&
beta
)
{
PADDLE_ENFORCE
(
beta
>=
0.0
f
,
"'beta' must be between 0.0."
);
});
AddComment
(
R"DOC(
Add Position Encoding Operator.
The add position encoding calculates the output based on the input, alpha, beta.
The size of each dimension of the parameters checked in the infer-shape.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plt
=
paddle
::
platform
;
REGISTER_OPERATOR
(
add_position_encoding
,
ops
::
AddPositionEncodingOp
,
ops
::
AddPositionEncodingOpMaker
,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
add_position_encoding_grad
,
ops
::
AddPositionEncodingOpGrad
);
REGISTER_OP_CPU_KERNEL
(
add_position_encoding
,
ops
::
AddPositionEncodingKernel
<
plt
::
CPUDeviceContext
,
float
>
,
ops
::
AddPositionEncodingKernel
<
plt
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
add_position_encoding_grad
,
ops
::
AddPositionEncodingGradKernel
<
plt
::
CPUDeviceContext
,
float
>
,
ops
::
AddPositionEncodingGradKernel
<
plt
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/add_position_encoding_op.h
0 → 100644
浏览文件 @
f3badacd
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
AddPositionEncodingKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
&
x_lod
=
X
->
lod
();
auto
*
src_ptr
=
X
->
data
<
T
>
();
auto
*
Out
=
context
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
dst_ptr
=
Out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
float
alpha
=
context
.
Attr
<
float
>
(
"alpha"
);
float
beta
=
context
.
Attr
<
float
>
(
"beta"
);
auto
x_dim
=
X
->
dims
();
int
batch_size
=
0
;
int
max_seq_len
=
0
;
int
enc_size
=
0
;
if
(
x_lod
.
empty
())
{
PADDLE_ENFORCE
(
x_dim
.
size
()
==
3UL
,
"The input X of Add Position Encoding should be 3-D Tensor!"
);
batch_size
=
x_dim
[
0
];
max_seq_len
=
x_dim
[
1
];
enc_size
=
x_dim
[
2
];
}
else
{
PADDLE_ENFORCE
(
x_dim
.
size
()
==
2UL
,
"The input X of Add Position Encoding should be 2-D LoDTensor!"
);
PADDLE_ENFORCE
(
x_lod
.
size
()
==
1UL
,
"The Add Position Encoding Op only supports lod_level == 1!"
);
batch_size
=
x_lod
[
0
].
size
()
-
1
;
max_seq_len
=
-
1
;
enc_size
=
x_dim
[
1
];
}
PADDLE_ENFORCE
(
enc_size
%
2
==
0
,
"Only support even encode size!"
);
const
int
half_size
=
enc_size
/
2
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
const
int
max_length
=
x_lod
.
empty
()
?
max_seq_len
:
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
];
for
(
int
j
=
0
;
j
<
max_length
;
++
j
)
{
for
(
int
k
=
0
;
k
<
half_size
;
++
k
)
{
const
double
val
=
(
half_size
>
1
)
?
j
/
pow
(
10000.0
,
double
(
k
)
/
(
half_size
-
1
))
:
j
/
10000.0
;
dst_ptr
[
k
]
=
src_ptr
[
k
]
*
alpha
+
sin
(
val
)
*
beta
;
dst_ptr
[
half_size
+
k
]
=
src_ptr
[
half_size
+
k
]
*
alpha
+
cos
(
val
)
*
beta
;
}
src_ptr
+=
enc_size
;
dst_ptr
+=
enc_size
;
}
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
AddPositionEncodingGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
dOut
=
context
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
dout
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dOut
);
auto
*
dX
=
context
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
float
alpha
=
context
.
Attr
<
float
>
(
"alpha"
);
auto
*
place
=
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
dx
.
device
(
*
place
)
=
dout
*
static_cast
<
T
>
(
alpha
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/gather_op.cc
浏览文件 @
f3badacd
...
...
@@ -102,7 +102,9 @@ REGISTER_OPERATOR(gather, ops::GatherOp, ops::GatherOpMaker,
paddle
::
framework
::
DefaultGradOpDescMaker
<
true
>
);
REGISTER_OPERATOR
(
gather_grad
,
ops
::
GatherGradOp
);
REGISTER_OP_CPU_KERNEL
(
gather
,
ops
::
GatherOpKernel
<
float
>
,
ops
::
GatherOpKernel
<
int
>
,
ops
::
GatherOpKernel
<
double
>
);
ops
::
GatherOpKernel
<
double
>
,
ops
::
GatherOpKernel
<
int
>
,
ops
::
GatherOpKernel
<
int64_t
>
);
REGISTER_OP_CPU_KERNEL
(
gather_grad
,
ops
::
GatherGradientOpKernel
<
float
>
,
ops
::
GatherGradientOpKernel
<
double
>
,
ops
::
GatherGradientOpKernel
<
int
>
,
ops
::
GatherGradientOpKernel
<
double
>
);
ops
::
GatherGradientOpKernel
<
int64_t
>
);
paddle/fluid/operators/gather_op.cu
浏览文件 @
f3badacd
...
...
@@ -61,5 +61,11 @@ class GatherGradOpCUDAKernel : public framework::OpKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
gather
,
ops
::
GatherOpCUDAKernel
<
float
>
);
REGISTER_OP_CUDA_KERNEL
(
gather_grad
,
ops
::
GatherGradOpCUDAKernel
<
float
>
);
REGISTER_OP_CUDA_KERNEL
(
gather
,
ops
::
GatherOpCUDAKernel
<
float
>
,
ops
::
GatherOpCUDAKernel
<
double
>
,
ops
::
GatherOpCUDAKernel
<
int64_t
>
,
ops
::
GatherOpCUDAKernel
<
int
>
);
REGISTER_OP_CUDA_KERNEL
(
gather_grad
,
ops
::
GatherGradOpCUDAKernel
<
float
>
,
ops
::
GatherGradOpCUDAKernel
<
double
>
,
ops
::
GatherGradOpCUDAKernel
<
int64_t
>
,
ops
::
GatherGradOpCUDAKernel
<
int
>
);
paddle/fluid/operators/math/sequence_pooling.cc
浏览文件 @
f3badacd
...
...
@@ -31,7 +31,7 @@ template <typename T, int MajorType = Eigen::RowMajor,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
>
template
<
typename
T
,
bool
is_test
>
class
MaxSeqPoolFunctor
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
...
...
@@ -70,7 +70,41 @@ class MaxSeqPoolFunctor {
}
}
};
// Instantisation of Max Sequence Pooling for test phase eg. no need to fill
// index buffer
template
<
typename
T
>
class
MaxSeqPoolFunctor
<
T
,
true
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
LoDTensor
&
input
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
index
)
{
auto
in_dims
=
input
.
dims
();
auto
out_dims
=
output
->
dims
();
PADDLE_ENFORCE_GT
(
in_dims
.
size
(),
1
);
PADDLE_ENFORCE_GT
(
out_dims
.
size
(),
1
);
for
(
int64_t
i
=
1
;
i
<
in_dims
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
in_dims
[
i
],
out_dims
[
i
]);
}
auto
starts
=
input
.
lod
()[
0
];
const
T
*
in_data
=
input
.
data
<
T
>
();
T
*
out_data
=
output
->
data
<
T
>
();
int64_t
num_seq
=
out_dims
[
0
];
int64_t
dim
=
output
->
numel
()
/
num_seq
;
for
(
int64_t
i
=
0
;
i
<
num_seq
;
++
i
)
{
std
::
memcpy
(
&
out_data
[
i
*
dim
],
&
in_data
[
starts
[
i
]
*
dim
],
dim
*
sizeof
(
T
));
for
(
size_t
j
=
starts
[
i
]
+
1
;
j
<
starts
[
i
+
1
];
++
j
)
{
for
(
int64_t
k
=
0
;
k
<
dim
;
++
k
)
{
if
(
in_data
[
j
*
dim
+
k
]
>
out_data
[
i
*
dim
+
k
])
{
out_data
[
i
*
dim
+
k
]
=
in_data
[
j
*
dim
+
k
];
}
}
}
}
}
};
template
<
typename
T
>
class
MaxSeqPoolGradFunctor
{
public:
...
...
@@ -188,11 +222,16 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
/* max pool has index output */
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
std
::
string
pooltype
,
const
framework
::
LoDTensor
&
input
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
output
,
bool
is_test
,
framework
::
Tensor
*
index
=
nullptr
)
{
if
(
pooltype
==
"MAX"
)
{
math
::
MaxSeqPoolFunctor
<
T
>
max_pool
;
max_pool
(
context
,
input
,
output
,
index
);
if
(
is_test
)
{
math
::
MaxSeqPoolFunctor
<
T
,
true
>
max_pool
;
max_pool
(
context
,
input
,
output
,
index
);
}
else
{
math
::
MaxSeqPoolFunctor
<
T
,
false
>
max_pool
;
max_pool
(
context
,
input
,
output
,
index
);
}
return
;
}
if
(
pooltype
==
"LAST"
)
{
...
...
@@ -200,6 +239,7 @@ class SequencePoolFunctor<platform::CPUDeviceContext, T> {
last_pool
(
context
,
input
,
output
);
return
;
}
if
(
pooltype
==
"FIRST"
)
{
math
::
FirstSeqPoolFunctor
<
T
>
first_pool
;
first_pool
(
context
,
input
,
output
);
...
...
paddle/fluid/operators/math/sequence_pooling.cu
浏览文件 @
f3badacd
...
...
@@ -133,7 +133,7 @@ class SequencePoolFunctor<platform::CUDADeviceContext, T> {
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
std
::
string
pooltype
,
const
framework
::
LoDTensor
&
input
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
output
,
bool
is_test
,
framework
::
Tensor
*
index
=
nullptr
)
{
auto
&
lod
=
input
.
lod
()[
0
];
const
size_t
item_dim
=
output
->
numel
()
/
output
->
dims
()[
0
];
...
...
paddle/fluid/operators/math/sequence_pooling.h
浏览文件 @
f3badacd
...
...
@@ -28,7 +28,7 @@ class SequencePoolFunctor {
/* max pool has index output */
void
operator
()(
const
DeviceContext
&
context
,
const
std
::
string
pooltype
,
const
framework
::
LoDTensor
&
input
,
framework
::
Tensor
*
output
,
framework
::
Tensor
*
index
=
nullptr
);
bool
is_test
=
false
,
framework
::
Tensor
*
index
=
nullptr
);
};
template
<
typename
DeviceContext
,
typename
T
>
...
...
paddle/fluid/operators/sequence_pool_op.cc
浏览文件 @
f3badacd
...
...
@@ -47,6 +47,7 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor<int>) This tensor is used for the sequence max-pooling "
"to record the max indexes."
)
.
AsIntermediate
();
AddAttr
<
bool
>
(
"is_test"
,
""
).
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"pooltype"
,
"(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp."
)
...
...
paddle/fluid/operators/sequence_pool_op.h
浏览文件 @
f3badacd
...
...
@@ -32,10 +32,6 @@ class SequencePoolKernel : public framework::OpKernel<T> {
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
std
::
string
pooltype
=
context
.
Attr
<
std
::
string
>
(
"pooltype"
);
Tensor
*
index
=
nullptr
;
if
(
pooltype
==
"MAX"
)
{
index
=
context
.
Output
<
Tensor
>
(
"MaxIndex"
);
}
auto
dims
=
in
->
dims
();
auto
lod
=
in
->
lod
();
...
...
@@ -48,13 +44,22 @@ class SequencePoolKernel : public framework::OpKernel<T> {
dims
[
0
]
=
lod
[
0
].
size
()
-
1
;
out
->
Resize
({
dims
});
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
if
(
pooltype
==
"MAX"
)
{
Tensor
*
index
=
nullptr
;
const
bool
is_test
=
context
.
Attr
<
bool
>
(
"is_test"
);
// Do not create index buffer for inference (is_test) mode
// TODO(jczaja): Skip index buffer creation for other devices eg. GPU
if
(
pooltype
==
"MAX"
&&
(
is_test
==
false
||
platform
::
is_cpu_place
(
context
.
GetPlace
())
==
false
))
{
index
=
context
.
Output
<
Tensor
>
(
"MaxIndex"
);
index
->
Resize
({
dims
});
index
->
mutable_data
<
int
>
(
context
.
GetPlace
());
}
math
::
SequencePoolFunctor
<
DeviceContext
,
T
>
pool
;
pool
(
context
.
template
device_context
<
DeviceContext
>(),
pooltype
,
*
in
,
out
,
index
);
i
s_test
,
i
ndex
);
}
};
...
...
paddle/fluid/operators/sum_op.cc
浏览文件 @
f3badacd
...
...
@@ -82,14 +82,16 @@ class SumOp : public framework::OperatorWithKernel {
if
(
x_vars
[
0
]
->
IsType
<
framework
::
LoDTensor
>
())
{
int
dtype
=
-
1
;
for
(
auto
&
x_var
:
x_vars
)
{
auto
&
lod_tensor
=
x_var
->
Get
<
framework
::
LoDTensor
>
();
if
(
lod_tensor
.
numel
()
==
0
)
{
// FIXME(zcd): The input x_var may be SelectedRows or LoDTensor.
auto
tensor
=
framework
::
GetTensorFromVar
(
const_cast
<
framework
::
Variable
*>
(
x_var
));
if
(
tensor
->
numel
()
==
0
)
{
continue
;
}
if
(
dtype
==
-
1
)
{
dtype
=
framework
::
ToDataType
(
lod_tensor
.
type
());
dtype
=
framework
::
ToDataType
(
tensor
->
type
());
}
else
{
PADDLE_ENFORCE_EQ
(
dtype
,
framework
::
ToDataType
(
lod_tensor
.
type
()));
PADDLE_ENFORCE_EQ
(
dtype
,
framework
::
ToDataType
(
tensor
->
type
()));
}
}
PADDLE_ENFORCE_NE
(
dtype
,
-
1
,
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
f3badacd
...
...
@@ -32,23 +32,25 @@ platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
"'Place' is not supported, Please re-compile with WITH_GPU "
"option"
);
}
return
it
->
second
.
get
();
return
it
->
second
.
get
()
.
get
()
;
}
const
std
::
vector
<
const
DeviceContext
*>
DeviceContextPool
::
GetAllDeviceContexts
()
const
{
std
::
vector
<
const
DeviceContext
*>
all_device_ctx
;
all_device_ctx
.
reserve
(
device_contexts_
.
size
());
for
(
auto
&
dev_ctx
:
device_contexts_
)
{
all_device_ctx
.
emplace_back
(
dev_ctx
.
second
.
get
());
}
return
all_device_ctx
;
template
<
typename
DevCtx
,
typename
PlaceType
>
inline
void
EmplaceDeviceContext
(
std
::
map
<
Place
,
std
::
shared_future
<
std
::
unique_ptr
<
DeviceContext
>>>*
map_ptr
,
platform
::
Place
p
)
{
using
PtrType
=
std
::
unique_ptr
<
DeviceContext
>
;
map_ptr
->
emplace
(
p
,
std
::
async
(
std
::
launch
::
deferred
,
[
=
]
{
// lazy evaluation. i.e., only create device context at
// first `Get`
return
PtrType
(
new
DevCtx
(
boost
::
get
<
PlaceType
>
(
p
)));
}));
}
DeviceContextPool
::
DeviceContextPool
(
const
std
::
vector
<
platform
::
Place
>&
places
)
{
PADDLE_ENFORCE_GT
(
places
.
size
(),
0
);
using
PtrType
=
std
::
unique_ptr
<
DeviceContext
>
;
std
::
set
<
Place
>
set
;
for
(
auto
&
p
:
places
)
{
set
.
insert
(
p
);
...
...
@@ -57,16 +59,13 @@ DeviceContextPool::DeviceContextPool(
for
(
auto
&
p
:
set
)
{
if
(
platform
::
is_cpu_place
(
p
))
{
#ifdef PADDLE_WITH_MKLDNN
device_contexts_
.
emplace
(
p
,
PtrType
(
new
MKLDNNDeviceContext
(
boost
::
get
<
CPUPlace
>
(
p
))));
EmplaceDeviceContext
<
MKLDNNDeviceContext
,
CPUPlace
>
(
&
device_contexts_
,
p
);
#else
device_contexts_
.
emplace
(
p
,
PtrType
(
new
CPUDeviceContext
(
boost
::
get
<
CPUPlace
>
(
p
))));
EmplaceDeviceContext
<
CPUDeviceContext
,
CPUPlace
>
(
&
device_contexts_
,
p
);
#endif
}
else
if
(
platform
::
is_gpu_place
(
p
))
{
#ifdef PADDLE_WITH_CUDA
device_contexts_
.
emplace
(
p
,
PtrType
(
new
CUDADeviceContext
(
boost
::
get
<
CUDAPlace
>
(
p
))));
EmplaceDeviceContext
<
CUDADeviceContext
,
CUDAPlace
>
(
&
device_contexts_
,
p
);
#else
PADDLE_THROW
(
"'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
...
...
@@ -74,9 +73,8 @@ DeviceContextPool::DeviceContextPool(
#endif
}
else
if
(
platform
::
is_cuda_pinned_place
(
p
))
{
#ifdef PADDLE_WITH_CUDA
device_contexts_
.
emplace
(
p
,
PtrType
(
new
CUDAPinnedDeviceContext
(
boost
::
get
<
CUDAPinnedPlace
>
(
p
))));
EmplaceDeviceContext
<
CUDAPinnedDeviceContext
,
CUDAPinnedPlace
>
(
&
device_contexts_
,
p
);
#else
PADDLE_THROW
(
"'CUDAPlace' is not supported, Please re-compile with WITH_GPU "
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
f3badacd
...
...
@@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <future> // NOLINT
#include <memory>
#include <mutex> // NOLINT
#include <string>
...
...
@@ -223,9 +224,6 @@ class DeviceContextPool {
/*! \brief Return handle of single device context. */
platform
::
DeviceContext
*
Get
(
const
platform
::
Place
&
place
);
/*! \brief Return all the device contexts. */
const
std
::
vector
<
const
DeviceContext
*>
GetAllDeviceContexts
()
const
;
template
<
typename
Place
>
const
typename
DefaultDeviceContextType
<
Place
>::
TYPE
*
GetByPlace
(
const
Place
&
place
)
{
...
...
@@ -237,7 +235,8 @@ class DeviceContextPool {
private:
static
DeviceContextPool
*
pool
;
std
::
map
<
Place
,
std
::
unique_ptr
<
DeviceContext
>>
device_contexts_
;
std
::
map
<
Place
,
std
::
shared_future
<
std
::
unique_ptr
<
DeviceContext
>>>
device_contexts_
;
DISABLE_COPY_AND_ASSIGN
(
DeviceContextPool
);
};
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
f3badacd
...
...
@@ -153,7 +153,6 @@ function cmake_gen() {
-DWITH_FLUID_ONLY=
${
WITH_FLUID_ONLY
:-
OFF
}
-DCMAKE_EXPORT_COMPILE_COMMANDS=ON
-DWITH_CONTRIB=
${
WITH_CONTRIB
:-
ON
}
-DWITH_INFERENCE=
${
WITH_INFERENCE
:-
ON
}
-DWITH_INFERENCE_API_TEST=
${
WITH_INFERENCE_API_TEST
:-
ON
}
-DINFERENCE_DEMO_INSTALL_DIR=
${
INFERENCE_DEMO_INSTALL_DIR
}
-DWITH_ANAKIN=
${
WITH_ANAKIN
:-
OFF
}
...
...
@@ -186,7 +185,6 @@ EOF
-DWITH_FLUID_ONLY
=
${
WITH_FLUID_ONLY
:-
OFF
}
\
-DCMAKE_EXPORT_COMPILE_COMMANDS
=
ON
\
-DWITH_CONTRIB
=
${
WITH_CONTRIB
:-
ON
}
\
-DWITH_INFERENCE
=
${
WITH_INFERENCE
:-
ON
}
\
-DWITH_INFERENCE_API_TEST
=
${
WITH_INFERENCE_API_TEST
:-
ON
}
\
-DINFERENCE_DEMO_INSTALL_DIR
=
${
INFERENCE_DEMO_INSTALL_DIR
}
\
-DWITH_ANAKIN
=
${
WITH_ANAKIN
:-
OFF
}
\
...
...
@@ -653,7 +651,7 @@ function gen_capi_package() {
function
gen_fluid_lib
()
{
mkdir
-p
${
PADDLE_ROOT
}
/build
cd
${
PADDLE_ROOT
}
/build
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
]]
;
then
cat
<<
EOF
========================================
Generating fluid library for train and inference ...
...
...
@@ -666,7 +664,7 @@ EOF
}
function
tar_fluid_lib
()
{
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
]]
;
then
cat
<<
EOF
========================================
Taring fluid library for train and inference ...
...
...
@@ -681,7 +679,7 @@ EOF
}
function
test_fluid_lib
()
{
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
&&
${
WITH_INFERENCE
:-
ON
}
==
"ON"
]]
;
then
if
[[
${
WITH_C_API
:-
OFF
}
==
"OFF"
]]
;
then
cat
<<
EOF
========================================
Testing fluid library for inference ...
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
f3badacd
...
...
@@ -157,6 +157,8 @@ __all__ = [
'sequence_reverse'
,
'affine_channel'
,
'hash'
,
'log_loss'
,
'add_position_encoding'
,
]
...
...
@@ -747,7 +749,7 @@ def dynamic_gru(input,
attr
=
helper
.
bias_attr
,
shape
=
[
1
,
3
*
size
],
dtype
=
dtype
,
is_bias
=
True
)
batch_size
=
input
.
shape
[
0
]
inputs
=
{
'Input'
:
input
,
'Weight'
:
weight
,
'Bias'
:
bias
}
if
h_0
!=
None
:
if
h_0
:
assert
h_0
.
shape
==
(
batch_size
,
size
),
'The shape of h0 should be(batch_size, %d)'
%
size
...
...
@@ -1823,7 +1825,7 @@ def conv3d(input,
return
helper
.
append_activation
(
pre_act
)
def
sequence_pool
(
input
,
pool_type
):
def
sequence_pool
(
input
,
pool_type
,
is_test
=
False
):
"""
This function add the operator for sequence pooling.
It pools features of all time-steps of each instance, and is applied
...
...
@@ -1860,6 +1862,7 @@ def sequence_pool(input, pool_type):
input(variable): The input variable which is a LoDTensor.
pool_type (string): The pooling type of sequence_pool.
It supports average, sum, sqrt and max.
is_test(bool, Default False): Used distinguish training from scoring mode.
Returns:
The sequence pooling variable which is a Tensor.
...
...
@@ -1887,7 +1890,8 @@ def sequence_pool(input, pool_type):
inputs
=
{
"X"
:
input
},
outputs
=
{
"Out"
:
pool_out
,
"MaxIndex"
:
max_index
},
attrs
=
{
"pooltype"
:
pool_type
.
upper
()})
attrs
=
{
"pooltype"
:
pool_type
.
upper
(),
"is_test"
:
is_test
})
# when pool_type is max, variable max_index is initialized,
# so we stop the gradient explicitly here
...
...
@@ -7580,3 +7584,99 @@ def hash(input, hash_size, num_hash=1, name=None):
attrs
=
{
'num_hash'
:
num_hash
,
'mod_by'
:
hash_size
})
return
out
def
log_loss
(
input
,
label
,
epsilon
=
1e-4
,
name
=
None
):
"""
**Negative Log Loss Layer**
This layer accepts input predictions and target label and returns the
negative log loss.
.. math::
Out = -label *
\\
log{(input +
\\
epsilon)}
- (1 - label) *
\\
log{(1 - input +
\\
epsilon)}
Args:
input (Variable|list): a 2-D tensor with shape [N x 1], where N is the
batch size. This input is a probability computed
by the previous operator.
label (Variable|list): the ground truth which is a 2-D tensor with
shape [N x 1], where N is the batch size.
epsilon (float): epsilon
name (string): the name of log_loss
Returns:
Variable: A 2-D tensor with shape [N x 1], the negative log loss.
Examples:
.. code-block:: python
prob = fluid.layers.sigmoid(net)
cost = fluid.layers.log_loss(input=prob, label=label)
"""
helper
=
LayerHelper
(
'log_loss'
,
**
locals
())
if
name
is
None
:
loss
=
helper
.
create_variable_for_type_inference
(
dtype
=
input
.
dtype
)
else
:
loss
=
helper
.
create_variable
(
name
=
name
,
dtype
=
input
.
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
'log_loss'
,
inputs
=
{
'Predicted'
:
[
input
],
'Labels'
:
[
label
]},
outputs
=
{
'Loss'
:
[
loss
]},
attrs
=
{
'epsilon'
:
epsilon
})
return
loss
def
add_position_encoding
(
input
,
alpha
,
beta
,
name
=
None
):
"""
**Add Position Encoding Layer**
This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
output Tensor of shape [N x M x P] with positional encoding value.
Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .
.. math::
PE(pos, 2i) =
\\
sin{(pos / 10000^{2i / P})}
\\\\
PE(pos, 2i + 1) =
\\
cos{(pos / 10000^{2i / P})}
\\\\
Out(:, pos, i) =
\\
alpha * input(:, pos, i) +
\\
beta * PE(pos, i)
Where:
* PE(pos, 2i): the increment for the number at even position
* PE(pos, 2i + 1): the increment for the number at odd position
Args:
input (Variable): 3-D input tensor with shape [N x M x P]
alpha (float): multiple of Input Tensor
beta (float): multiple of Positional Encoding Tensor
name (string): the name of position encoding layer
Returns:
Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.
Examples:
.. code-block:: python
position_tensor = fluid.layers.add_position_encoding(input=tensor)
"""
helper
=
LayerHelper
(
'add_position_encoding'
,
**
locals
())
dtype
=
helper
.
input_dtype
()
if
name
is
None
:
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
dtype
)
else
:
out
=
helper
.
create_variable
(
name
=
name
,
dtype
=
dtype
,
persistable
=
False
)
helper
.
append_op
(
type
=
"add_position_encoding"
,
inputs
=
{
"X"
:
input
},
outputs
=
{
"Out"
:
out
},
attrs
=
{
"alpha"
:
alpha
,
"beta"
:
beta
})
return
out
python/paddle/fluid/metrics.py
浏览文件 @
f3badacd
...
...
@@ -194,7 +194,7 @@ class CompositeMetric(MetricBase):
or soft-label, should custom the corresponding update rule.
"""
for
m
in
self
.
_metrics
:
ans
.
append
(
m
.
update
(
preds
,
labels
)
)
m
.
update
(
preds
,
labels
)
def
eval
(
self
):
"""
...
...
python/paddle/fluid/tests/CMakeLists.txt
浏览文件 @
f3badacd
set
(
PYTHON_TESTS_DIR
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/tests CACHE INTERNAL
"python tests directory"
)
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
...
...
python/paddle/fluid/tests/book/high-level-api/image_classification/CMakeLists.txt
浏览文件 @
f3badacd
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
# default test
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
if
(
NOT APPLE
)
# default test
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
else
()
foreach
(
src
${
TEST_OPS
}
)
if
(
${
src
}
STREQUAL
"test_image_classification_vgg"
)
message
(
WARNING
"These tests has been disabled in OSX for random fail:
\n
"
${
src
}
)
elseif
(
${
src
}
STREQUAL
"test_image_classification_resnet"
)
message
(
WARNING
"These tests has been disabled in OSX for random fail:
\n
"
${
src
}
)
elseif
()
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endif
()
endforeach
()
endif
()
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
f3badacd
...
...
@@ -17,6 +17,10 @@ if(NOT WITH_DISTRIBUTE)
list
(
REMOVE_ITEM TEST_OPS test_listen_and_serv_op
)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_mnist
)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_word2vec
)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_ctr
)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_simnet_bow
)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_mnist_batch_merge
)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_text_classification
)
endif
(
NOT WITH_DISTRIBUTE
)
list
(
REMOVE_ITEM TEST_OPS test_seq_concat_op
)
# FIXME(helin): https://github.com/PaddlePaddle/Paddle/issues/8290
...
...
@@ -55,6 +59,7 @@ function(py_test_modules TARGET_NAME)
if
(
py_test_modules_SERIAL
)
set_property
(
TEST
${
TARGET_NAME
}
PROPERTY RUN_SERIAL 1
)
endif
()
set_tests_properties
(
${
TARGET_NAME
}
PROPERTIES TIMEOUT 600
)
endif
()
endfunction
()
list
(
REMOVE_ITEM TEST_OPS test_warpctc_op
)
...
...
@@ -88,4 +93,6 @@ py_test_modules(test_parallel_executor_crf MODULES test_parallel_executor_crf SE
py_test_modules
(
test_parallel_executor_fetch_feed MODULES test_parallel_executor_fetch_feed SERIAL
)
set_tests_properties
(
test_parallel_executor_fetch_feed PROPERTIES TIMEOUT 150
)
py_test_modules
(
test_parallel_executor_transformer MODULES test_parallel_executor_transformer SERIAL
)
py_test_modules
(
test_image_classification_resnet MODULES test_image_classification_resnet SERIAL
)
if
(
NOT APPLE
)
py_test_modules
(
test_image_classification_resnet MODULES test_image_classification_resnet SERIAL
)
endif
()
python/paddle/fluid/tests/unittests/dist_mnist.py
浏览文件 @
f3badacd
...
...
@@ -90,8 +90,10 @@ class TestDistMnist2x2(TestDistRunnerBase):
inference_program
=
fluid
.
default_main_program
().
clone
()
# Optimization
opt
=
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.001
,
beta1
=
0.9
,
beta2
=
0.999
)
# TODO(typhoonzero): fix distributed adam optimizer
# opt = fluid.optimizer.AdamOptimizer(
# learning_rate=0.001, beta1=0.9, beta2=0.999)
opt
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.001
,
momentum
=
0.9
)
# Reader
train_reader
=
paddle
.
batch
(
...
...
python/paddle/fluid/tests/unittests/test_add_position_encoding_op.py
0 → 100644
浏览文件 @
f3badacd
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
math
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
class
TestAddPositionEncodingTensorOp
(
OpTest
):
"""
This class is to test the AddPositionEncodingOp
"""
def
setUp
(
self
):
"""
the prepared section for add position encoding op
"""
self
.
op_type
=
"add_position_encoding"
self
.
dtype
=
np
.
float32
self
.
init_input_output
()
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
self
.
x
),
}
self
.
outputs
=
{
'Out'
:
self
.
out
}
self
.
attrs
=
{
'alpha'
:
self
.
alpha
,
'beta'
:
self
.
beta
}
def
test_check_output
(
self
):
"""
check the correctness of output
"""
self
.
check_output
()
def
test_check_grad
(
self
):
"""
check the correctness of grad
"""
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.005
)
def
init_input_output
(
self
):
"""
init the input and output for test cases
"""
self
.
alpha
=
0.6
self
.
beta
=
0.5
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
2
,
4
,
4
]).
astype
(
self
.
dtype
)
self
.
out
=
np
.
copy
(
self
.
x
)
batch_size
=
self
.
x
.
shape
[
0
]
max_length
=
self
.
x
.
shape
[
1
]
enc_size
=
self
.
x
.
shape
[
2
]
half_shape
=
int
(
enc_size
/
2
)
for
i
in
range
(
batch_size
):
for
j
in
range
(
max_length
):
for
k
in
range
(
half_shape
):
val
=
j
/
pow
(
10000.0
,
k
/
(
half_shape
-
1
))
if
half_shape
>
1
else
j
/
10000.0
self
.
out
[
i
,
j
,
k
]
=
\
self
.
x
[
i
,
j
,
k
]
*
self
.
alpha
+
math
.
sin
(
val
)
*
self
.
beta
self
.
out
[
i
,
j
,
half_shape
+
k
]
=
\
self
.
x
[
i
,
j
,
half_shape
+
k
]
*
self
.
alpha
+
math
.
cos
(
val
)
*
self
.
beta
class
TestAddPositionEncodingLoDTensorOp
(
OpTest
):
"""
This class is to test the AddPositionEncodingLoDTensorOp
"""
def
setUp
(
self
):
"""
the prepared section for add position encoding LoDTensor op
"""
self
.
op_type
=
"add_position_encoding"
self
.
dtype
=
np
.
float32
self
.
init_input_output
()
self
.
inputs
=
{
'X'
:
(
self
.
x
,
self
.
lod
),
}
self
.
outputs
=
{
'Out'
:
(
self
.
out
,
self
.
lod
)}
self
.
attrs
=
{
'alpha'
:
self
.
alpha
,
'beta'
:
self
.
beta
}
def
test_check_output
(
self
):
"""
check the correctness of output
"""
self
.
check_output
()
def
test_check_grad
(
self
):
"""
check the correctness of grad
"""
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.005
)
def
init_input_output
(
self
):
"""
init the input and output for test cases
"""
self
.
alpha
=
0.6
self
.
beta
=
0.5
self
.
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
10
,
4
]).
astype
(
self
.
dtype
)
self
.
lod
=
[[
3
,
7
]]
self
.
out
=
np
.
copy
(
self
.
x
)
batch_size
=
len
(
self
.
lod
[
0
])
enc_size
=
self
.
x
.
shape
[
1
]
start
=
0
half_shape
=
int
(
enc_size
/
2
)
for
i
in
range
(
batch_size
):
max_length
=
self
.
lod
[
0
][
i
]
for
j
in
range
(
max_length
):
for
k
in
range
(
half_shape
):
val
=
j
/
pow
(
10000.0
,
k
/
(
half_shape
-
1
))
if
half_shape
>
1
else
j
/
10000.0
pos
=
start
+
j
self
.
out
[
pos
,
k
]
=
\
self
.
x
[
pos
,
k
]
*
self
.
alpha
+
math
.
sin
(
val
)
*
self
.
beta
self
.
out
[
pos
,
half_shape
+
k
]
=
\
self
.
x
[
pos
,
half_shape
+
k
]
*
self
.
alpha
+
math
.
cos
(
val
)
*
self
.
beta
start
+=
max_length
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
f3badacd
...
...
@@ -22,6 +22,8 @@ import signal
import
subprocess
import
six
import
argparse
import
pickle
import
numpy
as
np
import
paddle.fluid
as
fluid
...
...
@@ -128,10 +130,15 @@ class TestDistRunnerBase(object):
else
:
return
origin_batch
out_losses
=
[]
for
_
in
six
.
moves
.
xrange
(
RUN_STEP
):
loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
get_data
()))
print
(
loss
)
out_losses
.
append
(
loss
[
0
])
if
six
.
PY2
:
print
(
pickle
.
dumps
(
out_losses
))
else
:
sys
.
stdout
.
buffer
.
write
(
pickle
.
dumps
(
out_losses
))
def
runtime_main
(
test_class
):
...
...
@@ -149,7 +156,7 @@ def runtime_main(test_class):
parser
.
add_argument
(
'--use_cuda'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--use_reduce'
,
action
=
'store_true'
)
parser
.
add_argument
(
'--use_reader_alloc'
,
action
=
'store_true'
,
required
=
False
,
default
=
True
)
'--use_reader_alloc'
,
action
=
'store_true'
,
required
=
False
)
parser
.
add_argument
(
'--batch_size'
,
required
=
False
,
type
=
int
,
default
=
2
)
parser
.
add_argument
(
'--batch_merge_repeat'
,
required
=
False
,
type
=
int
,
default
=
1
)
...
...
@@ -188,7 +195,7 @@ class TestDistBase(unittest.TestCase):
self
.
_pservers
=
2
self
.
_ps_endpoints
=
"127.0.0.1:%s,127.0.0.1:%s"
%
(
self
.
_find_free_port
(),
self
.
_find_free_port
())
self
.
_python_interp
=
"python"
self
.
_python_interp
=
sys
.
executable
self
.
_sync_mode
=
True
self
.
_enforce_place
=
None
self
.
_mem_opt
=
False
...
...
@@ -237,21 +244,6 @@ class TestDistBase(unittest.TestCase):
return
ps0_proc
,
ps1_proc
,
ps0_pipe
,
ps1_pipe
def
_wait_ps_ready
(
self
,
pid
):
retry_times
=
50
while
True
:
assert
retry_times
>=
0
,
"wait ps ready failed"
time
.
sleep
(
3
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
as
e
:
sys
.
stderr
.
write
(
'waiting for pserver: %s, left retry %d
\n
'
%
(
e
,
retry_times
))
retry_times
-=
1
def
_run_local
(
self
,
model
,
envs
,
...
...
@@ -288,23 +280,20 @@ class TestDistBase(unittest.TestCase):
env
=
envs
)
local_out
,
local_err
=
local_proc
.
communicate
()
local_ret
=
cpt
.
to_text
(
local_out
)
if
check_error_log
:
err_log
.
close
()
sys
.
stderr
.
write
(
'local_stdout: %s
\n
'
%
local_ret
)
sys
.
stderr
.
write
(
'local_stdout: %s
\n
'
%
pickle
.
loads
(
local_out
)
)
sys
.
stderr
.
write
(
'local_stderr: %s
\n
'
%
local_err
)
local_losses
=
local_ret
.
split
(
"
\n
"
)
return
local_losses
return
pickle
.
loads
(
local_out
)
def
_run_cluster
(
self
,
model
,
envs
,
check_error_log
):
# Run dist train to compare with local results
ps0
,
ps1
,
ps0_pipe
,
ps1_pipe
=
self
.
start_pserver
(
model
,
check_error_log
,
envs
)
self
.
_wait_ps_ready
(
ps0
.
pid
)
self
.
_wait_ps_ready
(
ps1
.
pid
)
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
tr_cmd
=
"%s %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --is_dist"
...
...
@@ -339,8 +328,8 @@ class TestDistBase(unittest.TestCase):
env0
.
update
(
envs
)
env1
.
update
(
envs
)
print
(
"tr0_cmd:{}
, env0: {}"
.
format
(
tr0_cmd
,
env0
))
print
(
"tr1_cmd:{}
, env1: {}"
.
format
(
tr1_cmd
,
env1
))
print
(
"tr0_cmd:{}
"
.
format
(
tr0_cmd
))
print
(
"tr1_cmd:{}
"
.
format
(
tr1_cmd
))
tr0_pipe
=
open
(
"/tmp/tr0_err.log"
,
"wb"
)
tr1_pipe
=
open
(
"/tmp/tr1_err.log"
,
"wb"
)
...
...
@@ -356,9 +345,7 @@ class TestDistBase(unittest.TestCase):
env
=
env1
)
tr0_out
,
tr0_err
=
tr0_proc
.
communicate
()
tr0_loss_text
=
cpt
.
to_text
(
tr0_out
)
tr1_out
,
tr1_err
=
tr1_proc
.
communicate
()
tr1_loss_text
=
cpt
.
to_text
(
tr1_out
)
# close trainer file
tr0_pipe
.
close
()
...
...
@@ -373,15 +360,13 @@ class TestDistBase(unittest.TestCase):
ps1
.
terminate
()
# print log
sys
.
stderr
.
write
(
'trainer 0 stdout:
\n
%s
\n
'
%
tr0_loss_text
)
sys
.
stderr
.
write
(
'trainer 0 stderr:
\n
%s
\n
'
%
tr0_err
)
sys
.
stderr
.
write
(
'trainer 1 stdout: %s
\n
'
%
tr1_loss_text
)
sys
.
stderr
.
write
(
'trainer 0 stdout:
%s
\n
'
%
pickle
.
loads
(
tr0_out
)
)
sys
.
stderr
.
write
(
'trainer 0 stderr: %s
\n
'
%
tr0_err
)
sys
.
stderr
.
write
(
'trainer 1 stdout: %s
\n
'
%
pickle
.
loads
(
tr1_out
)
)
sys
.
stderr
.
write
(
'trainer 1 stderr: %s
\n
'
%
tr1_err
)
tr0_losses
=
tr0_loss_text
.
split
(
"
\n
"
)
tr1_losses
=
tr1_loss_text
.
split
(
"
\n
"
)
return
tr0_losses
,
tr1_losses
# return tr0_losses, tr1_losses
return
pickle
.
loads
(
tr0_out
),
pickle
.
loads
(
tr1_out
)
def
check_with_place
(
self
,
model_file
,
...
...
@@ -411,9 +396,9 @@ class TestDistBase(unittest.TestCase):
check_error_log
)
for
step_id
in
range
(
RUN_STEP
):
local_loss
=
eval
(
local_losses
[
step_id
])[
0
]
tr0_loss
=
eval
(
tr0_losses
[
step_id
])[
0
]
tr1_loss
=
eval
(
tr1_losses
[
step_id
])[
0
]
dist_loss
=
(
tr0_loss
+
tr1_loss
)
/
2
print
(
str
(
local_loss
)
+
":"
+
str
(
dist_loss
)
)
self
.
assertAlmostEqual
(
local_loss
,
dist_loss
,
delta
=
delta
)
local_loss
=
local_losses
[
step_id
]
tr0_loss
=
tr0_losses
[
step_id
]
tr1_loss
=
tr1_losses
[
step_id
]
dist_loss
=
(
np
.
array
([
tr0_loss
])
+
np
.
array
([
tr1_loss
])
)
/
2
print
(
"======="
,
local_loss
,
":"
,
dist_loss
[
0
],
"======="
)
self
.
assertAlmostEqual
(
local_loss
,
dist_loss
[
0
]
,
delta
=
delta
)
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
浏览文件 @
f3badacd
...
...
@@ -23,16 +23,17 @@ class TestDistSeResneXt2x2(TestDistBase):
self
.
_use_reader_alloc
=
False
def
test_dist_train
(
self
):
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
1
00
)
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
1
e-7
)
class
TestDistseResnXt2x2WithMemopt
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
True
self
.
_mem_opt
=
True
self
.
_use_reader_alloc
=
False
def
test_dist_train
(
self
):
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
1
00
)
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
1
e-7
)
class
TestDistSeResneXt2x2Async
(
TestDistBase
):
...
...
python/paddle/fluid/tests/unittests/test_seq_pool.py
浏览文件 @
f3badacd
...
...
@@ -184,6 +184,20 @@ class TestSeqMaxPool2D(TestSeqAvgPool2D):
out
[
i
]
=
np
.
reshape
(
np
.
amax
(
sub_x
,
axis
=
0
),
(
3
,
11
))
class
TestSeqMaxPool2DInference
(
TestSeqMaxPool2D
):
def
compute
(
self
,
x
,
offset
,
out
):
self
.
attrs
=
{
'pooltype'
:
"MAX"
,
'is_test'
:
True
}
for
i
in
range
(
len
(
offset
[
0
])
-
1
):
sub_x
=
np
.
reshape
(
x
[
offset
[
0
][
i
]:
offset
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
11
))
out
[
i
]
=
np
.
reshape
(
np
.
amax
(
sub_x
,
axis
=
0
),
(
3
,
11
))
def
test_check_grad
(
self
):
"""Grad computation does not apply to Sequence MAX
Pool executed when is_test is true """
return
class
TestSeqLastPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
,
x
,
offset
,
out
):
self
.
attrs
=
{
'pooltype'
:
"LAST"
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录