Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f2a32ddd
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f2a32ddd
编写于
1月 24, 2018
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into fix_im2seq
上级
1234b8b4
95853fc1
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
36 addition
and
33 deletion
+36
-33
doc/design/dist_refactor/parameter_server.md
doc/design/dist_refactor/parameter_server.md
+20
-20
doc/howto/optimization/cpu_profiling.md
doc/howto/optimization/cpu_profiling.md
+1
-2
paddle/gserver/layers/PriorBox.cpp
paddle/gserver/layers/PriorBox.cpp
+1
-1
paddle/operators/ctc_align_op.h
paddle/operators/ctc_align_op.h
+1
-1
paddle/operators/sequence_reshape_op.h
paddle/operators/sequence_reshape_op.h
+1
-1
python/paddle/v2/image.py
python/paddle/v2/image.py
+12
-8
未找到文件。
doc/design/dist_refactor/parameter_server.md
浏览文件 @
f2a32ddd
...
@@ -9,16 +9,16 @@ different purposes.
...
@@ -9,16 +9,16 @@ different purposes.
## Background
## Background
The previous implementations of the parameter server do
es
not run a
The previous implementations of the parameter server do not run a
fluid sub-program. Parameter initialization, optimizer computation, network
fluid sub-program. Parameter initialization, optimizer computation, network
communication and checkpointing are implemented twice on both the
communication and checkpointing are implemented twice on both the
trainer a
nd
the parameter server.
trainer a
s well as
the parameter server.
It would be great if we can write code once and use them on both the
It would be great if we can write code once and use them on both
:
the
trainer and the parameter server
:
reduces code duplication and
trainer and the parameter server
, since this
reduces code duplication and
improves extensibility. Given that after the current refactor, we are
improves extensibility. Given that after the current refactor
ing
, we are
representing everything as a comput
ing
graph on the
representing everything as a comput
ation
graph on the
trainer. Representing everything as a comput
ing
graph on the parameter
trainer. Representing everything as a comput
ation
graph on the parameter
server becomes a natural extension.
server becomes a natural extension.
## Design
## Design
...
@@ -30,9 +30,9 @@ into sub-programs to be scheduled on different nodes with the following
...
@@ -30,9 +30,9 @@ into sub-programs to be scheduled on different nodes with the following
steps:
steps:
1.
OP placement: the OPs will be placed on different nodes according
1.
OP placement: the OPs will be placed on different nodes according
to
heuristic that minimizes
estimated total computation
to
a heuristic that minimizes the
estimated total computation
time. Currently we will use a simple heuristic that puts parameter
time. Currently we will use a simple heuristic that puts parameter
varable on parameter server workers and everything else on trainer
var
i
able on parameter server workers and everything else on trainer
workers.
workers.
1.
Add communication OPs to enable the communication between nodes.
1.
Add communication OPs to enable the communication between nodes.
...
@@ -47,22 +47,22 @@ After converting:
...
@@ -47,22 +47,22 @@ After converting:
<img
src=
"src/dist-graph.png"
width=
"700"
/>
<img
src=
"src/dist-graph.png"
width=
"700"
/>
1.
The parameter variable W and it
'
s optimizer program are placed on the parameter server.
1.
The parameter variable W and its optimizer program are placed on the parameter server.
1.
Operators are added to the program.
1.
Operators are added to the program.
-
*Send*
sends data to the connected
*Recv*
operator. The
-
*Send*
sends data to the connected
*Recv*
operator. The
scheduler on the receive node will only schedule
*Recv*
operator
scheduler on the receive node will only schedule
*Recv*
operator
to run when the
*Send*
operator has ran (the
*Send*
OP will mark
to run when the
*Send*
operator has ran (the
*Send*
OP will mark
the
*Recv*
OP runnable automatically).
the
*Recv*
OP runnable automatically).
-
*Enueue*
enqueues the input variable, it can block until space
-
*En
q
ueue*
enqueues the input variable, it can block until space
become available in the queue.
become available in the queue.
-
*Dequeue*
outputs configurable numbers of tensors from the
-
*Dequeue*
outputs configurable numbers of tensors from the
queue. It will block until the queue ha
ve
the required number of
queue. It will block until the queue ha
s
the required number of
tensors.
tensors.
### Benefits
### Benefits
-
Model parallelism become
easier to implement: it'
s an extension to
-
Model parallelism become
s easier to implement: it i
s an extension to
the trainer - parameter server approach. We can have several "Transpilers"
the trainer - parameter server approach. We can have several "Transpilers"
to achieve different goals.
to achieve different goals.
-
User-defined optimizer is easier to add - user can now express it as
-
User-defined optimizer is easier to add - user can now express it as
...
@@ -72,22 +72,22 @@ After converting:
...
@@ -72,22 +72,22 @@ After converting:
### Challenges
### Challenges
-
It
's important to balance the parameter shards of
on multiple
-
It
is important to balance the parameter shards
on multiple
parameter server
. If a single parameter is very big (
some
parameter server
s. If a single parameter is very big (for example:
some
word-embedding, fully connected, softmax layer), we need to
word-embedding, fully connected, softmax layer), we need to
automatically partition the single parameter onto different
automatically partition the single parameter onto different
parameter servers when possible (only element-wise optimizer depends
parameter servers when possible (only element-wise optimizer depends
on the parameter variable).
on the parameter variable).
-
In the "Aync SGD" figure, the "W" variable on the parameter server
-
In the "A
s
ync SGD" figure, the "W" variable on the parameter server
could be read and wr
ote
concurrently. See
could be read and wr
itten
concurrently. See
[
here
](
https://github.com/PaddlePaddle/Paddle/pull/6394
)
for more
[
here
](
https://github.com/PaddlePaddle/Paddle/pull/6394
)
for more
details about concurrent program in
f
luid.
details about concurrent program in
F
luid.
### Discussion
### Discussion
-
Can the Enqueue OP be implemented under our current tensor design
-
Can the Enqueue OP be implemented under our current tensor design
(put
s
the input tensor into the queue tensor)?
(put the input tensor into the queue tensor)?
-
*Dequeue*
OP will have variable numbers of output (depend
s
on the
-
*Dequeue*
OP will have variable numbers of output (depend
ing
on the
`min_count`
attribute), does our current design support it? (similar
`min_count`
attribute), does our current design support it? (similar
question for the
*Add*
OP)
question for the
*Add*
OP)
...
...
doc/howto/optimization/cpu_profiling.md
浏览文件 @
f2a32ddd
...
@@ -60,8 +60,7 @@ each column is as follows:
...
@@ -60,8 +60,7 @@ each column is as follows:
| column | meaning |
| column | meaning |
| --- | --- |
| --- | --- |
| ncalls | the number of calls into a function |
| ncalls | the number of calls into a function |
| tottime | the total execution time of the function, not including the
| tottime | the total execution time of the function, not including the execution time of other functions called by the function |
execution time of other functions called by the function |
| percall | tottime divided by ncalls |
| percall | tottime divided by ncalls |
| cumtime | the total execution time of the function, including the execution time of other functions being called |
| cumtime | the total execution time of the function, including the execution time of other functions being called |
| percall | cumtime divided by ncalls |
| percall | cumtime divided by ncalls |
...
...
paddle/gserver/layers/PriorBox.cpp
浏览文件 @
f2a32ddd
...
@@ -69,7 +69,7 @@ bool PriorBoxLayer::init(const LayerMap& layerMap,
...
@@ -69,7 +69,7 @@ bool PriorBoxLayer::init(const LayerMap& layerMap,
if
(
maxSize_
.
size
()
>
0
)
CHECK_EQ
(
minSize_
.
size
(),
maxSize_
.
size
());
if
(
maxSize_
.
size
()
>
0
)
CHECK_EQ
(
minSize_
.
size
(),
maxSize_
.
size
());
// flip aspect ratios
// flip aspect ratios
for
(
int
index
=
0
;
index
<
tmp
.
size
();
index
++
)
{
for
(
unsigned
index
=
0
;
index
<
tmp
.
size
();
index
++
)
{
real
ar
=
tmp
[
index
];
real
ar
=
tmp
[
index
];
if
(
fabs
(
ar
-
1.
)
<
1e-6
)
continue
;
if
(
fabs
(
ar
-
1.
)
<
1e-6
)
continue
;
aspectRatio_
.
push_back
(
ar
);
aspectRatio_
.
push_back
(
ar
);
...
...
paddle/operators/ctc_align_op.h
浏览文件 @
f2a32ddd
...
@@ -51,7 +51,7 @@ class CTCAlignKernel : public framework::OpKernel<T> {
...
@@ -51,7 +51,7 @@ class CTCAlignKernel : public framework::OpKernel<T> {
T
prev_token
=
-
1
;
T
prev_token
=
-
1
;
for
(
size_t
i
=
input_lod
[
level
][
seq_idx
];
for
(
size_t
i
=
input_lod
[
level
][
seq_idx
];
i
<
input_lod
[
level
][
seq_idx
+
1
];
++
i
)
{
i
<
input_lod
[
level
][
seq_idx
+
1
];
++
i
)
{
if
(
input_data
[
i
]
!=
blank
&&
if
(
(
unsigned
)
input_data
[
i
]
!=
blank
&&
!
(
merge_repeated
&&
input_data
[
i
]
==
prev_token
))
{
!
(
merge_repeated
&&
input_data
[
i
]
==
prev_token
))
{
output_data
[
output_idx
]
=
input_data
[
i
];
output_data
[
output_idx
]
=
input_data
[
i
];
++
output_idx
;
++
output_idx
;
...
...
paddle/operators/sequence_reshape_op.h
浏览文件 @
f2a32ddd
...
@@ -35,7 +35,7 @@ class SequenceReshapeKernel : public framework::OpKernel<T> {
...
@@ -35,7 +35,7 @@ class SequenceReshapeKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
in_lod
.
size
(),
1UL
,
PADDLE_ENFORCE_EQ
(
in_lod
.
size
(),
1UL
,
"Only support one level sequence now."
);
"Only support one level sequence now."
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
in_dims
[
0
],
in_lod
[
0
].
back
(),
(
uint64_t
)
in_dims
[
0
],
in_lod
[
0
].
back
(),
"Inconsistent size between X.shape[0] and X.lod()[0].back()."
);
"Inconsistent size between X.shape[0] and X.lod()[0].back()."
);
auto
in_lod_l0
=
in_lod
[
0
];
auto
in_lod_l0
=
in_lod
[
0
];
...
...
python/paddle/v2/image.py
浏览文件 @
f2a32ddd
...
@@ -176,7 +176,6 @@ def resize_short(im, size):
...
@@ -176,7 +176,6 @@ def resize_short(im, size):
:param size: the shorter edge size of image after resizing.
:param size: the shorter edge size of image after resizing.
:type size: int
:type size: int
"""
"""
assert
im
.
shape
[
-
1
]
==
1
or
im
.
shape
[
-
1
]
==
3
h
,
w
=
im
.
shape
[:
2
]
h
,
w
=
im
.
shape
[:
2
]
h_new
,
w_new
=
size
,
size
h_new
,
w_new
=
size
,
size
if
h
>
w
:
if
h
>
w
:
...
@@ -267,7 +266,7 @@ def random_crop(im, size, is_color=True):
...
@@ -267,7 +266,7 @@ def random_crop(im, size, is_color=True):
return
im
return
im
def
left_right_flip
(
im
):
def
left_right_flip
(
im
,
is_color
=
True
):
"""
"""
Flip an image along the horizontal direction.
Flip an image along the horizontal direction.
Return the flipped image.
Return the flipped image.
...
@@ -278,13 +277,15 @@ def left_right_flip(im):
...
@@ -278,13 +277,15 @@ def left_right_flip(im):
im = left_right_flip(im)
im = left_right_flip(im)
:pa
am im: input image with HWC layout
:pa
ram im: input image with HWC layout or HW layout for gray image
:type im: ndarray
:type im: ndarray
:param is_color: whether input image is color or not
:type is_color: bool
"""
"""
if
len
(
im
.
shape
)
==
3
:
if
len
(
im
.
shape
)
==
3
and
is_color
:
return
im
[:,
::
-
1
,
:]
return
im
[:,
::
-
1
,
:]
else
:
else
:
return
im
[:,
::
-
1
,
:
]
return
im
[:,
::
-
1
]
def
simple_transform
(
im
,
def
simple_transform
(
im
,
...
@@ -321,8 +322,9 @@ def simple_transform(im,
...
@@ -321,8 +322,9 @@ def simple_transform(im,
if
is_train
:
if
is_train
:
im
=
random_crop
(
im
,
crop_size
,
is_color
=
is_color
)
im
=
random_crop
(
im
,
crop_size
,
is_color
=
is_color
)
if
np
.
random
.
randint
(
2
)
==
0
:
if
np
.
random
.
randint
(
2
)
==
0
:
im
=
left_right_flip
(
im
)
im
=
left_right_flip
(
im
,
is_color
)
else
:
else
:
im
=
center_crop
(
im
,
crop_size
,
is_color
)
im
=
center_crop
(
im
,
crop_size
,
is_color
=
is_color
)
im
=
center_crop
(
im
,
crop_size
,
is_color
=
is_color
)
if
len
(
im
.
shape
)
==
3
:
if
len
(
im
.
shape
)
==
3
:
im
=
to_chw
(
im
)
im
=
to_chw
(
im
)
...
@@ -331,8 +333,10 @@ def simple_transform(im,
...
@@ -331,8 +333,10 @@ def simple_transform(im,
if
mean
is
not
None
:
if
mean
is
not
None
:
mean
=
np
.
array
(
mean
,
dtype
=
np
.
float32
)
mean
=
np
.
array
(
mean
,
dtype
=
np
.
float32
)
# mean value, may be one value per channel
# mean value, may be one value per channel
if
mean
.
ndim
==
1
:
if
mean
.
ndim
==
1
and
is_color
:
mean
=
mean
[:,
np
.
newaxis
,
np
.
newaxis
]
mean
=
mean
[:,
np
.
newaxis
,
np
.
newaxis
]
elif
mean
.
ndim
==
1
:
mean
=
mean
else
:
else
:
# elementwise mean
# elementwise mean
assert
len
(
mean
.
shape
)
==
len
(
im
)
assert
len
(
mean
.
shape
)
==
len
(
im
)
...
@@ -372,6 +376,6 @@ def load_and_transform(filename,
...
@@ -372,6 +376,6 @@ def load_and_transform(filename,
mean values per channel.
mean values per channel.
:type mean: numpy array | list
:type mean: numpy array | list
"""
"""
im
=
load_image
(
filename
)
im
=
load_image
(
filename
,
is_color
)
im
=
simple_transform
(
im
,
resize_size
,
crop_size
,
is_train
,
is_color
,
mean
)
im
=
simple_transform
(
im
,
resize_size
,
crop_size
,
is_train
,
is_color
,
mean
)
return
im
return
im
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录