提交 f25c9c5f 编写于 作者: J jacquesqiao 提交者: GitHub

Merge pull request #1431 from luotao1/proj

add ParamAttr in V2
...@@ -18,11 +18,12 @@ import parameters ...@@ -18,11 +18,12 @@ import parameters
import trainer import trainer
import event import event
import data_type import data_type
import attr
import py_paddle.swig_paddle as api import py_paddle.swig_paddle as api
__all__ = [ __all__ = [
'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer', 'optimizer', 'layer', 'activation', 'parameters', 'init', 'trainer',
'event', 'data_type' 'event', 'data_type', 'attr'
] ]
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers.attrs import *
__all__ = [
"Param",
"Extra",
]
Param = ParameterAttribute
Extra = ExtraLayerAttribute
...@@ -74,6 +74,8 @@ from paddle.trainer_config_helpers.config_parser_utils import \ ...@@ -74,6 +74,8 @@ from paddle.trainer_config_helpers.config_parser_utils import \
from paddle.trainer_config_helpers.default_decorators import wrap_name_default from paddle.trainer_config_helpers.default_decorators import wrap_name_default
import data_type import data_type
import activation
import attr
__all__ = [ __all__ = [
'parse_network', 'data', 'fc', 'max_id', 'classification_cost', 'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
...@@ -230,8 +232,11 @@ if __name__ == '__main__': ...@@ -230,8 +232,11 @@ if __name__ == '__main__':
weight = data(name='weight', type=data_type.dense_vector(10)) weight = data(name='weight', type=data_type.dense_vector(10))
score = data(name='score', type=data_type.dense_vector(1)) score = data(name='score', type=data_type.dense_vector(1))
hidden = fc(input=pixel, size=100, act=conf_helps.SigmoidActivation()) hidden = fc(input=pixel,
inference = fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation()) size=100,
act=activation.Sigmoid(),
param_attr=attr.Param(name='hidden'))
inference = fc(input=hidden, size=10, act=activation.Softmax())
maxid = max_id(input=inference) maxid = max_id(input=inference)
cost1 = classification_cost(input=inference, label=label) cost1 = classification_cost(input=inference, label=label)
cost2 = classification_cost(input=inference, label=label, weight=weight) cost2 = classification_cost(input=inference, label=label, weight=weight)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册