Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f24b5dff
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f24b5dff
编写于
9月 26, 2017
作者:
H
Helin Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update Session design doc
上级
94dfd864
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
160 addition
and
72 deletion
+160
-72
doc/design/refactor/session.md
doc/design/refactor/session.md
+160
-0
doc/design/session.md
doc/design/session.md
+0
-72
未找到文件。
doc/design/refactor/session.md
0 → 100644
浏览文件 @
f24b5dff
# Design Doc: Session
## Abstract
The
*session*
object encapsulates the environment in which the
computation graph is executed.
We will have
*local*
session and
*remote*
session, they offer the
same
[
interface
](
#interface
)
. The local session encapsulates the local
runtime environment and the remote session encapsulates the cluster
runtime envrionment.
The local runtime envrionment contains:
1.
computation devices (i.e., CPU, GPU) handles, and
1.
the
[
scope
](
../scope.md
)
which holds all variables.
The remote runtime envrionment contains:
1.
computation devices (i.e., CPU and GPU on node 0, 1) in a cluster,
and
1.
the distributed
[
scope
](
../scope.md
)
in a cluster which holds all
variables.
The user can create a remote session on Paddle Cloud and evaluate the
computation graph with it. In this way, the user can control the
remote computation resource in a cluster from his local computer.
## Background
The current design has an implicit global session on which
`paddle.eval()`
is executed. The pain point is:
Since the user is not able to explicitly switch between runtime
environments such as the scope and the device contexts, the user
cannot run a topology in two independent environments.
For example, in reinforcement learning, the user may want to have a
stale model for inference and a fresh model for training, and only
replace the stale model with the fresh model periodically.
Furthermore, we have no concept that encapsulates a remote environment
that executes a computation graph.
We need the session object to address above issues.
## Session
A session is an object that owns the runtime environment. All
computations are executed through
`session.eval`
.
### Interface
```
eval(
targets,
feed_dict=None,
)
```
Evaluates the target Operations or Variables in
`targets`
.
-
*targets*
: the evaluation targets. Can be a single Operation or
Variable, or a list with the Operations or Variables as elements.
The value returned by
`eval()`
has the same shape as the
`target`
argument.
The computation graph is implicitly inferred from the targets.
-
*feed_dict*
: a dictionary that contains the tensors which overrides
the edges of the computation graph.
```
close()
```
Closes the session. Calling this method releases the scope.
### Create a Local Session
```
session(
gpu_ids=None
)
```
Creates a new session. One session owns one scope, so creating
multiple sessions will create different scopes.
-
*gpu_ids*
: a single
`int`
or a list of
`int`
of the GPU IDs to be
used as the computation devices. If not specified, all avaiable GPUs
will be used.
#### Example
```
Python
a = paddle.constant(1.0)
b = paddle.constant(2.0)
c = a + b
sess = paddle.session(gpu_ids=[0,1])
sess.eval(c)
sess.close()
```
### Create a Remote Session
```
create_cloud_job(
name,
num_trainer,
mem_per_trainer,
gpu_per_trainer,
cpu_per_trainer,
num_ps,
mem_per_ps,
cpu_per_ps,
)
```
Creates a Paddle Cloud job. Fails if the job name exists.
```
get_cloud_job(
name
)
```
Gets a Paddle Cloud job.
```
remote_session(
job
)
```
-
*job*
: the Paddle Cloud job.
#### Example
```
Python
reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud
image = reader.column(0)
label = reader.column(1)
fc1 = paddle.op.fc(image, size=256, act="sigmoid")
fc2 = paddle.op.fc(fc1, size=10, act="softmax")
cost = paddle.op.cross_entropy(fc2, label)
opt = paddle.optimizer.sgd(cost)
job = paddle.create_cloud_job("test", 3, "1G", 1, 1, 2, "1G", 1)
sess = paddle.remote_ession(job)
for i in range(1000):
sess.eval(opt)
sess.close()
```
doc/design/session.md
已删除
100644 → 0
浏览文件 @
94dfd864
# Design Doc: Session
## Abstract
This design doc proposes to have an object called
*Session*
which
encapsulates the environment in which the computation graph is
executed.
The session is able to distinguish running a graph locally or
remotely, using CPU only or using one or more GPUs. Different sessions
have different runtime environments such as
[
scopes
](
./scope.md
)
and
device contexts.
## Background
A computation graph runs in an environment which contains states such
as the scope and device contexts. The current design has an implicit
global session on which
`paddle.eval()`
is executed.
Since the user is not able to explicitly switch between runtime
environments such as the scope and the device contexts, the user
cannot run a topology in two independent environments. For example, in
reinforcement learning, the user may want to have a stale model for
inference and a fresh model for training, and only replace the stale
model with the fresh model periodically. Also, we have no concept that
can encapsulate a remote environment that could execute a computation
graph.
We need a session concept to address above issues.
## Session
A session is an object that owns all runtime states such as scope,
reader OP's file handles, connection to a remote PaddlePaddle cluster,
etc.
The session has two methods:
`eval`
and
`close`
.
`eval`
executes the
target OP in a given graph, and
`close`
closes the session and
releases all related resources:
```
Python
a = paddle.constant(1.0)
b = paddle.constant(2.0)
c = a + b
sess = paddle.session()
sess.eval(c)
sess.close()
```
### Remote Session
Paddle Cloud will support user creating a remote session pointing to
the Paddle Cloud cluster. The user can send the computation graph to
be executed on the Paddle Cloud. In this way, the user can control a
cluster from her local computer:
```
Python
reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud
image = reader.column(0)
label = reader.column(1)
fc1 = paddle.op.fc(image, size=256, act="sigmoid")
fc2 = paddle.op.fc(fc1, size=10, act="softmax")
cost = paddle.op.cross_entropy(fc2, label)
opt = paddle.optimizer.sgd(cost)
remote_config = ... # remote configuration such as endpoint, number of nodes and authentication.
sess = paddle.remoteSession(remote_config)
for i in range(1000):
sess.eval(opt)
sess.close()
```
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录