未验证 提交 f24275a4 编写于 作者: K Kaipeng Deng 提交者: GitHub

[cherry-pick] add prune benchmark (#262)

* add prune model latency (#260) & fix run command for windows (#261)
上级 450871cd
......@@ -4,7 +4,7 @@
PaddleDetection的目的是为工业界和学术界提供丰富、易用的目标检测模型。不仅性能优越、易于部署,而且能够灵活的满足算法研究的需求。
**目前检测库下模型均要求使用PaddlePaddle 1.6及以上版本或适当的develop版本。**
**目前检测库下模型均要求使用PaddlePaddle 1.7及以上版本或适当的develop版本。**
<div align="center">
<img src="docs/images/000000570688.jpg" />
......
......@@ -86,6 +86,30 @@ Pascal VOC数据集上蒸馏通道剪裁模型库如下。
| MobileNetV1 | r578 | 69.57% | 67.00% | 416 | YOLOv3-ResNet34 | 78.7 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar) |
| MobileNetV1 | r578 | 69.57% | 67.00% | 320 | YOLOv3-ResNet34 | 76.3 | [下载链接](https://paddlemodels.bj.bcebos.com/PaddleSlim/prune/yolov3_mobilenet_v1_voc_prune578_distillby_r34.tar) |
### YOLOv3通道剪裁模型推理时延
- 时延单位均为`ms/images`
- Tesla P4时延为单卡并开启TensorRT推理时延
- 高通835/高通855/麒麟970时延为使用PaddleLite部署,使用`arm8`架构并使用4线程(4 Threads)推理时延
| 骨架网络 | 数据集 | 剪裁策略 | FLOPs剪裁率 | 模型体积剪裁率 | 输入尺寸 | Tesla P4 | 麒麟970 | 高通835 | 高通855 |
| :--------------- | :----: | :------: | :---------: | :------------: | :------: | :------: | :-----: | :-----: | :-----: |
| MobileNetV1 | VOC | baseline | - | - | 608 | 16.556 | 748.404 | 734.970 | 289.878 |
| MobileNetV1 | VOC | baseline | - | - | 416 | 9.031 | 371.214 | 349.065 | 140.877 |
| MobileNetV1 | VOC | baseline | - | - | 320 | 6.235 | 221.705 | 200.498 | 80.515 |
| MobileNetV1 | VOC | r578 | 69.57% | 67.00% | 608 | 10.064 | 314.531 | 323.537 | 123.414 |
| MobileNetV1 | VOC | r578 | 69.57% | 67.00% | 416 | 5.478 | 151.562 | 146.014 | 56.420 |
| MobileNetV1 | VOC | r578 | 69.57% | 67.00% | 320 | 3.880 | 91.132 | 87.440 | 31.470 |
| ResNet50-vd-dcn | COCO | baseline | - | - | 608 | 36.127 | - | - | - |
| ResNet50-vd-dcn | COCO | baseline | - | - | 416 | 20.437 | - | - | - |
| ResNet50-vd-dcn | COCO | baseline | - | - | 320 | 14.037 | - | - | - |
| ResNet50-vd-dcn | COCO | sensity | 18.41% | 15.46% | 608 | 33.245 | - | - | - |
| ResNet50-vd-dcn | COCO | sensity | 18.41% | 15.46% | 416 | 19.246 | - | - | - |
| ResNet50-vd-dcn | COCO | sensity | 18.41% | 15.46% | 320 | 13.656 | - | - | - |
| ResNet50-vd-dcn | COCO | r578 | 43.69% | 36.61% | 608 | 29.138 | - | - | - |
| ResNet50-vd-dcn | COCO | r578 | 43.69% | 36.61% | 416 | 16.439 | - | - | - |
| ResNet50-vd-dcn | COCO | r578 | 43.69% | 36.61% | 320 | 11.339 | - | - | - |
## 蒸馏模型库
......
......@@ -63,7 +63,7 @@ python slim/quantization/train.py --not_quant_pattern yolo_output \
-o max_iters=30000 \
save_dir=./output/mobilenetv1 \
LearningRate.base_lr=0.0001 \
LearningRate.schedulers='[!PiecewiseDecay {gamma: 0.1, milestones: [10000]}]' \
LearningRate.schedulers="[!PiecewiseDecay {gamma: 0.1, milestones: [10000]}]" \
pretrain_weights=https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar
```
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册