提交 f21e3f73 编写于 作者: Y Yang yaming 提交者: GitHub

Merge pull request #2247 from pkuyym/fix-2240

fix bugs for CrossChannelNormLayer
......@@ -36,6 +36,16 @@ MatrixPtr CrossChannelNormLayer::createSpatialMatrix(MatrixPtr data,
data->getData() + iter * spatialDim, 1, spatialDim, false, useGpu_);
}
bool CrossChannelNormLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
Layer::init(layerMap, parameterMap);
CHECK(parameters_[0]);
const NormConfig& conf = config_.inputs(0).norm_conf();
channels_ = conf.channels();
scale_.reset(new Weight(channels_, 1, parameters_[0]));
return true;
}
void CrossChannelNormLayer::forward(PassType passType) {
Layer::forward(passType);
MatrixPtr inV = getInputValue(0);
......@@ -51,9 +61,7 @@ void CrossChannelNormLayer::forward(PassType passType) {
Matrix::resizeOrCreate(dataBuffer_, batchSize, dataDim, false, useGpu_);
Matrix::resizeOrCreate(spatialBuffer_, 1, spatialDim, false, useGpu_);
Matrix::resizeOrCreate(normBuffer_, batchSize, spatialDim, false, useGpu_);
normBuffer_->zeroMem();
// add eps to avoid overflow
normBuffer_->addScalar(*normBuffer_, 1e-6);
inV->square2(*dataBuffer_);
for (size_t i = 0; i < batchSize; i++) {
const MatrixPtr inVTmp = createSampleMatrix(inV, i, spatialDim);
......@@ -63,6 +71,8 @@ void CrossChannelNormLayer::forward(PassType passType) {
// compute norm.
spatialBuffer_->sumCols(*dataTmp, 1, 0);
// add eps to avoid overflow
spatialBuffer_->add(1e-6);
spatialBuffer_->sqrt2(*spatialBuffer_);
normTmp->copyFrom(*spatialBuffer_);
outVTmp->copyFrom(*inVTmp);
......@@ -82,6 +92,9 @@ void CrossChannelNormLayer::backward(const UpdateCallback& callback) {
size_t dataDim = inG->getWidth();
size_t spatialDim = dataDim / channels_;
MatrixPtr inGBuffer;
Matrix::resizeOrCreate(inGBuffer, channels_, spatialDim, false, useGpu_);
dataBuffer_->dotMul(*outG, *outV);
Matrix::resizeOrCreate(scaleDiff_, channels_, 1, false, useGpu_);
Matrix::resizeOrCreate(channelBuffer_, channels_, 1, false, useGpu_);
......@@ -100,22 +113,24 @@ void CrossChannelNormLayer::backward(const UpdateCallback& callback) {
scaleDiff_->add(*channelBuffer_, 1.);
sampleBuffer_->dotMul(*inVTmp, *outGTmp);
spatialBuffer_->sumCols(*sampleBuffer_, 1., 1.);
spatialBuffer_->sumCols(*sampleBuffer_, 1., 0.);
// scale the grad
inGTmp->copyFrom(*inVTmp);
inGTmp->mulRowVector(*spatialBuffer_);
inGBuffer->copyFrom(*inVTmp);
inGBuffer->mulRowVector(*spatialBuffer_);
// divide by square of norm
spatialBuffer_->dotMul(*normTmp, *normTmp);
inGTmp->divRowVector(*spatialBuffer_);
inGBuffer->divRowVector(*spatialBuffer_);
// subtract
inGTmp->add(*outGTmp, -1, 1);
inGBuffer->add(*outGTmp, -1, 1);
// divide by norm
inGTmp->divRowVector(*normTmp);
inGBuffer->divRowVector(*normTmp);
// scale the diff
inGTmp->mulColVector(*scale_->getW());
inGBuffer->mulColVector(*scale_->getW());
inGTmp->add(*inGBuffer);
}
// updata scale
if (scale_->getWGrad()) scale_->getWGrad()->copyFrom(*scaleDiff_);
if (scale_->getWGrad()) scale_->getWGrad()->add(*scaleDiff_);
scale_->getParameterPtr()->incUpdate(callback);
}
......
......@@ -56,14 +56,4 @@ bool ResponseNormLayer::init(const LayerMap& layerMap,
return true;
}
bool CrossChannelNormLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
Layer::init(layerMap, parameterMap);
CHECK(parameters_[0]);
const NormConfig& conf = config_.inputs(0).norm_conf();
channels_ = conf.channels();
scale_.reset(new Weight(channels_, 1, parameters_[0]));
return true;
}
} // namespace paddle
......@@ -465,7 +465,6 @@ void initTestLayer(TestConfig testConf,
ParameterConfig paraConfig) {
paraConfig.set_name(paraName);
paraConfig.set_size(paraSize);
paraConfig.set_initial_std(1);
paraConfig.set_is_static(isStatic);
auto para =
std::make_shared<Parameter>(paraConfig, FLAGS_use_gpu, initialize);
......@@ -499,6 +498,9 @@ void initTestLayer(TestConfig testConf,
paraConfig.add_dims((*layerMap)[input.input_layer_name()]->getSize());
paraConfig.add_dims(testConf.layerConfig.size());
}
CHECK_GE(testConf.paramInitialStd, 0);
paraConfig.set_initial_mean(testConf.paramInitialMean);
paraConfig.set_initial_std(testConf.paramInitialStd);
initParameter(paraName, paraSize, inputDef.isStatic, false, paraConfig);
}
}
......
......@@ -125,12 +125,16 @@ struct TestConfig {
LayerConfig layerConfig;
std::vector<InputDef> inputDefs;
size_t biasSize;
real paramInitialMean;
real paramInitialStd;
bool testAccumulate;
bool testState;
bool staticBias;
bool testBatchState;
TestConfig()
: biasSize(0),
paramInitialMean(0.0),
paramInitialStd(1.0),
testAccumulate(true),
testState(false),
staticBias(false),
......
......@@ -1669,6 +1669,8 @@ TEST(Layer, PadLayer) {
TEST(Layer, CrossChannelNormLayer) {
TestConfig config;
config.paramInitialMean = 1.;
config.paramInitialStd = 0.;
config.layerConfig.set_type("norm");
config.layerConfig.set_size(100);
LayerInputConfig* input = config.layerConfig.add_inputs();
......@@ -1682,7 +1684,7 @@ TEST(Layer, CrossChannelNormLayer) {
config.inputDefs.push_back({INPUT_DATA, "layer_0", 100, 10});
for (auto useGpu : {false, true}) {
testLayerGrad(config, "cross-channel-norm", 10, false, useGpu, false, 5);
testLayerGrad(config, "cross-channel-norm", 10, false, useGpu, false);
}
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册