Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f1bf1334
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f1bf1334
编写于
8月 22, 2018
作者:
Q
Qiao Longfei
提交者:
GitHub
8月 22, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12823 from jacquesqiao/cherry-pick-rw-lock
Cherry pick rw lock
上级
ef9029db
3f103a78
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
383 addition
and
185 deletion
+383
-185
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+2
-0
paddle/fluid/framework/rw_lock.h
paddle/fluid/framework/rw_lock.h
+48
-0
paddle/fluid/framework/rw_lock_test.cc
paddle/fluid/framework/rw_lock_test.cc
+81
-0
paddle/fluid/framework/selected_rows.cc
paddle/fluid/framework/selected_rows.cc
+60
-50
paddle/fluid/framework/selected_rows.h
paddle/fluid/framework/selected_rows.h
+35
-28
paddle/fluid/framework/selected_rows_test.cc
paddle/fluid/framework/selected_rows_test.cc
+118
-25
paddle/fluid/operators/distributed/rpc_server_test.cc
paddle/fluid/operators/distributed/rpc_server_test.cc
+1
-2
paddle/fluid/operators/lookup_sparse_table_op.cc
paddle/fluid/operators/lookup_sparse_table_op.cc
+2
-51
paddle/fluid/operators/sgd_op.h
paddle/fluid/operators/sgd_op.h
+1
-1
paddle/fluid/operators/uniform_random_op.cc
paddle/fluid/operators/uniform_random_op.cc
+3
-1
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+1
-0
python/paddle/fluid/tests/unittests/test_lookup_sparse_table_op.py
...ddle/fluid/tests/unittests/test_lookup_sparse_table_op.py
+30
-27
python/paddle/fluid/tests/unittests/test_sgd_op.py
python/paddle/fluid/tests/unittests/test_sgd_op.py
+1
-0
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
f1bf1334
...
...
@@ -115,6 +115,8 @@ cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc)
# cc_test(channel_test SRCS channel_test.cc)
cc_test
(
tuple_test SRCS tuple_test.cc
)
cc_test
(
rw_lock_test SRCS rw_lock_test.cc
)
# disable test temporarily.
# TODO https://github.com/PaddlePaddle/Paddle/issues/11971
# cc_test(concurrency_test SRCS concurrency_test.cc DEPS go_op channel_close_op channel_create_op
...
...
paddle/fluid/framework/rw_lock.h
0 → 100644
浏览文件 @
f1bf1334
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <pthread.h>
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
framework
{
struct
RWLock
{
RWLock
()
{
pthread_rwlock_init
(
&
lock_
,
nullptr
);
}
~
RWLock
()
{
pthread_rwlock_destroy
(
&
lock_
);
}
void
RDLock
()
{
PADDLE_ENFORCE_EQ
(
pthread_rwlock_rdlock
(
&
lock_
),
0
,
"acquire read lock failed"
);
}
void
WRLock
()
{
PADDLE_ENFORCE_EQ
(
pthread_rwlock_wrlock
(
&
lock_
),
0
,
"acquire write lock failed"
);
}
void
UNLock
()
{
PADDLE_ENFORCE_EQ
(
pthread_rwlock_unlock
(
&
lock_
),
0
,
"unlock failed"
);
}
private:
pthread_rwlock_t
lock_
;
};
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/rw_lock_test.cc
0 → 100644
浏览文件 @
f1bf1334
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/rw_lock.h"
#include <gtest/gtest.h>
#include <chrono> // NOLINT
#include <thread> // NOLINT
#include <vector>
namespace
f
=
paddle
::
framework
;
void
f1
(
f
::
RWLock
*
lock
)
{
lock
->
RDLock
();
lock
->
UNLock
();
}
TEST
(
RWLOCK
,
read_read
)
{
f
::
RWLock
lock
;
lock
.
RDLock
();
std
::
thread
t1
(
f1
,
&
lock
);
std
::
thread
t2
(
f1
,
&
lock
);
t1
.
join
();
t2
.
join
();
lock
.
UNLock
();
}
void
f2
(
f
::
RWLock
*
lock
,
std
::
vector
<
int
>
*
result
)
{
lock
->
RDLock
();
ASSERT_EQ
(
result
->
size
(),
0UL
);
lock
->
UNLock
();
}
void
f3
(
f
::
RWLock
*
lock
,
std
::
vector
<
int
>
*
result
)
{
lock
->
WRLock
();
result
->
push_back
(
1
);
lock
->
UNLock
();
}
TEST
(
RWLOCK
,
read_write
)
{
f
::
RWLock
lock
;
std
::
vector
<
int
>
result
;
lock
.
RDLock
();
std
::
thread
t1
(
f2
,
&
lock
,
&
result
);
t1
.
join
();
std
::
thread
t2
(
f3
,
&
lock
,
&
result
);
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
seconds
(
1
));
ASSERT_EQ
(
result
.
size
(),
0UL
);
lock
.
UNLock
();
t2
.
join
();
ASSERT_EQ
(
result
.
size
(),
1UL
);
}
void
f4
(
f
::
RWLock
*
lock
,
std
::
vector
<
int
>
*
result
)
{
lock
->
RDLock
();
ASSERT_EQ
(
result
->
size
(),
1UL
);
lock
->
UNLock
();
}
TEST
(
RWLOCK
,
write_read
)
{
f
::
RWLock
lock
;
std
::
vector
<
int
>
result
;
lock
.
WRLock
();
std
::
thread
t1
(
f4
,
&
lock
,
&
result
);
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
seconds
(
1
));
result
.
push_back
(
1
);
lock
.
UNLock
();
t1
.
join
();
}
paddle/fluid/framework/selected_rows.cc
浏览文件 @
f1bf1334
...
...
@@ -120,66 +120,76 @@ bool SelectedRows::HasKey(int64_t key) const {
:
true
;
}
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
SelectedRows
::
Get
(
const
std
::
vector
<
int64_t
>&
keys
,
framework
::
Tensor
*
value
)
const
{
int64_t
SelectedRows
::
AutoGrownIndex
(
int64_t
key
,
bool
auto_grown
)
{
rwlock_
->
RDLock
();
auto
iter
=
id_to_index_
.
find
(
key
);
if
(
iter
==
id_to_index_
.
end
())
{
rwlock_
->
UNLock
();
if
(
!
auto_grown
)
{
PADDLE_THROW
(
"key %d not found"
,
key
);
}
rwlock_
->
WRLock
();
auto
map_size
=
id_to_index_
.
size
();
auto
vector_size
=
rows_
.
size
();
if
(
map_size
!=
vector_size
)
{
rwlock_
->
UNLock
();
PADDLE_THROW
(
"id_to_index_ size %d should have the same size with rows_ %d"
,
map_size
,
vector_size
);
}
auto
write_iter
=
id_to_index_
.
find
(
key
);
if
(
write_iter
==
id_to_index_
.
end
())
{
size_t
row_num
=
rows_
.
size
();
if
(
row_num
==
value_
->
dims
()[
0
])
{
rwlock_
->
UNLock
();
PADDLE_THROW
(
"selected rows is full, then length exceed %d"
,
row_num
);
}
// key logic to put a key into id_to_index_
rows_
.
push_back
(
key
);
auto
index
=
static_cast
<
int64_t
>
(
rows_
.
size
()
-
1
);
id_to_index_
[
key
]
=
index
;
rwlock_
->
UNLock
();
return
index
;
}
else
{
auto
index
=
write_iter
->
second
;
rwlock_
->
UNLock
();
return
index
;
}
}
else
{
auto
index
=
iter
->
second
;
rwlock_
->
UNLock
();
return
index
;
}
}
void
SelectedRows
::
SyncIndex
()
{
rwlock_
->
WRLock
();
id_to_index_
.
clear
();
for
(
size_t
i
=
0
;
i
<
rows_
.
size
();
++
i
)
{
id_to_index_
[
rows_
[
i
]]
=
i
;
}
rwlock_
->
UNLock
();
}
void
SelectedRows
::
Get
(
const
framework
::
Tensor
&
ids
,
framework
::
Tensor
*
value
,
bool
auto_grown
)
{
PADDLE_ENFORCE
(
value
->
IsInitialized
(),
"The value tensor should be initialized."
);
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
non_keys_pair
;
if
(
keys
.
empty
())
{
if
(
ids
.
numel
()
==
0
)
{
VLOG
(
3
)
<<
"keys is empty, please check data!"
;
}
else
{
int64_t
value_width
=
value_
->
numel
()
/
value_
->
dims
()[
0
];
PADDLE_ENFORCE_EQ
(
value_width
,
value
->
numel
()
/
value
->
dims
()[
0
],
"output tensor should have the same shape with table "
"except the dims[0]."
);
for
(
size_t
i
=
0
;
i
<
keys
.
size
();
++
i
)
{
int64_t
index
=
Index
(
keys
[
i
]);
if
(
index
==
-
1
)
{
non_keys_pair
.
push_back
(
std
::
make_pair
(
keys
[
i
],
static_cast
<
int64_t
>
(
i
)));
}
else
{
framework
::
VisitDataType
(
framework
::
ToDataType
(
value_
->
type
()),
TensorCopyVisitor
(
value
,
i
*
value_width
,
*
value_
.
get
(),
index
*
value_width
,
value_width
));
}
for
(
size_t
i
=
0
;
i
<
ids
.
numel
();
++
i
)
{
int64_t
index
=
AutoGrownIndex
(
ids
.
data
<
int64_t
>
()[
i
],
auto_grown
);
framework
::
VisitDataType
(
framework
::
ToDataType
(
value_
->
type
()),
TensorCopyVisitor
(
value
,
i
*
value_width
,
*
value_
.
get
(),
index
*
value_width
,
value_width
));
}
}
return
non_keys_pair
;
}
bool
SelectedRows
::
Set
(
int64_t
key
,
const
framework
::
Tensor
&
value
)
{
PADDLE_ENFORCE
(
value
.
IsInitialized
(),
"The value should be initialized."
);
if
(
value_
->
IsInitialized
())
{
PADDLE_ENFORCE_EQ
(
value
.
type
(),
value_
->
type
(),
"The type of the value should be same with the original value"
);
}
PADDLE_ENFORCE_EQ
(
value
.
dims
()[
0
],
static_cast
<
size_t
>
(
1
),
"The first dim of value should be 1."
);
std
::
lock_guard
<
std
::
mutex
>
lock
(
*
auto_grown_mutex_
.
get
());
auto
index
=
Index
(
key
);
bool
is_new_key
=
false
;
if
(
index
==
-
1
)
{
rows_
.
push_back
(
key
);
index
=
rows_
.
size
()
-
1
;
is_new_key
=
true
;
// whether need to resize the table
if
(
static_cast
<
int64_t
>
(
rows_
.
size
())
>
value_
->
dims
()[
0
])
{
auto
dims
=
value_
->
dims
();
dims
[
0
]
=
(
dims
[
0
]
+
1
)
<<
1
;
framework
::
VisitDataType
(
framework
::
ToDataType
(
value
.
type
()),
ReAllocateVisitor
(
dims
,
value_
.
get
()));
}
}
framework
::
VisitDataType
(
framework
::
ToDataType
(
value
.
type
()),
TensorCopyVisitor
(
value_
.
get
(),
index
*
value_
->
numel
()
/
value_
->
dims
()[
0
],
value
,
static_cast
<
int64_t
>
(
0
),
value
.
numel
()));
return
is_new_key
;
}
}
// namespace framework
...
...
paddle/fluid/framework/selected_rows.h
浏览文件 @
f1bf1334
...
...
@@ -17,10 +17,12 @@ limitations under the License. */
#include <algorithm>
#include <memory>
#include <mutex> // NOLINT
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/rw_lock.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/memory/memcpy.h"
...
...
@@ -48,13 +50,13 @@ class SelectedRows {
SelectedRows
(
const
std
::
vector
<
int64_t
>&
rows
,
const
int64_t
&
height
)
:
rows_
(
rows
),
height_
(
height
)
{
value_
.
reset
(
new
Tensor
());
auto_grown_mutex_
.
reset
(
new
std
::
mutex
);
rwlock_
.
reset
(
new
RWLock
);
}
SelectedRows
()
{
height_
=
0
;
value_
.
reset
(
new
Tensor
());
auto_grown_mutex_
.
reset
(
new
std
::
mutex
);
rwlock_
.
reset
(
new
RWLock
);
}
platform
::
Place
place
()
const
{
return
value_
->
place
();
}
...
...
@@ -74,47 +76,51 @@ class SelectedRows {
void
set_rows
(
const
Vector
<
int64_t
>&
rows
)
{
rows_
=
rows
;
}
/*
* @brief wheter has the specified key in the table.
* @brief Get the index of key in rows
*
* @return -1 if the key does not exists.
*/
int64_t
Index
(
int64_t
key
)
const
{
auto
it
=
std
::
find
(
rows_
.
begin
(),
rows_
.
end
(),
key
);
if
(
it
==
rows_
.
end
())
{
PADDLE_THROW
(
"id %s not in table"
,
key
);
}
return
static_cast
<
int64_t
>
(
std
::
distance
(
rows_
.
begin
(),
it
));
}
/*
* @brief whether has the specified key in the table.
*
* @return true if the key is exists.
*/
bool
HasKey
(
int64_t
key
)
const
;
/*
* @brief Get value by the key list, if the
* @brief Get value by the key list.
* Note!!! this interface is only used when selected_rows is used as
* parameters
* for distribute lookup table.
*
* @return a list of pair which contains the non-exists key and the index in
* the value
*/
std
::
vector
<
std
::
pair
<
int64_t
,
int64_t
>>
Get
(
const
std
::
vector
<
int64_t
>&
keys
,
framework
::
Tensor
*
value
)
const
;
void
Get
(
const
framework
::
Tensor
&
ids
,
framework
::
Tensor
*
value
,
bool
auto_grown
=
false
)
;
/*
* @brief Set a key-value pair into the table.
* This function will double the value memory if it's not engouth.
* @brief Get the index of the key from id_to_index_ map. If the key not
* exist,
* add the key into id_to_index_.
*
* @note:
* 1. The first dim of the value should be 1
* 2. The value should be initialized and the data type
* should be the same with the table.
*
* @return true if the key is a new one, otherwise false
* Note!!! this interface is only used when selected_rows is used as
* parameters
* for distribute lookup table.
*
* @return index of the key.
*/
bool
Set
(
int64_t
key
,
const
Tensor
&
value
);
int64_t
AutoGrownIndex
(
int64_t
key
,
bool
auto_grown
);
/*
* @brief Get the index of key in rows
*
* @return -1 if the key does not exists.
*/
int64_t
Index
(
int64_t
key
)
const
{
auto
it
=
std
::
find
(
rows_
.
begin
(),
rows_
.
end
(),
key
);
if
(
it
==
rows_
.
end
())
{
return
static_cast
<
int64_t
>
(
-
1
);
}
return
static_cast
<
int64_t
>
(
std
::
distance
(
rows_
.
begin
(),
it
));
}
void
SyncIndex
();
DDim
GetCompleteDims
()
const
{
std
::
vector
<
int64_t
>
dims
=
vectorize
(
value_
->
dims
());
...
...
@@ -127,9 +133,10 @@ class SelectedRows {
// SelectedRows are simply concated when adding together. Until a
// SelectedRows add a Tensor, will the duplicate rows be handled.
Vector
<
int64_t
>
rows_
;
std
::
unordered_map
<
int64_t
,
int64_t
>
id_to_index_
;
std
::
unique_ptr
<
Tensor
>
value_
{
nullptr
};
int64_t
height_
;
std
::
unique_ptr
<
std
::
mutex
>
auto_grown_mutex
_
{
nullptr
};
std
::
unique_ptr
<
RWLock
>
rwlock
_
{
nullptr
};
};
/*
...
...
paddle/fluid/framework/selected_rows_test.cc
浏览文件 @
f1bf1334
...
...
@@ -9,8 +9,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/selected_rows.h"
#include <time.h>
#include <thread> // NOLINT
#include "gtest/gtest.h"
#include "paddle/fluid/framework/selected_rows.h"
namespace
paddle
{
namespace
framework
{
...
...
@@ -59,39 +62,129 @@ TEST_F(SelectedRowsTester, SerializeAndDeseralize) {
ASSERT_EQ
(
selected_rows_
->
GetCompleteDims
(),
dst_tensor
.
GetCompleteDims
());
}
TEST
_F
(
SelectedRowsTester
,
SparseTable
)
{
TEST
(
SelectedRows
,
SparseTable
)
{
platform
::
CPUPlace
cpu
;
SelectedRows
table
;
int64_t
table_size
=
100
;
int64_t
embedding_width
=
8
;
// initialize a sparse table
table
.
mutable_value
()
->
Resize
(
framework
::
make_ddim
({
1
,
100
}));
table
.
mutable_value
()
->
mutable_data
<
float
>
(
cpu
);
table
.
mutable_rows
()
->
push_back
(
1
);
table
.
mutable_value
()
->
Resize
(
framework
::
make_ddim
({
table_size
,
embedding_width
}));
auto
*
data
=
table
.
mutable_value
()
->
mutable_data
<
float
>
(
cpu
);
for
(
int64_t
i
=
0
;
i
<
table_size
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
embedding_width
;
++
j
)
{
data
[
i
*
embedding_width
+
j
]
=
static_cast
<
float
>
(
i
);
}
}
ASSERT_EQ
(
table
.
AutoGrownIndex
(
10
,
true
),
0
);
ASSERT_EQ
(
table
.
AutoGrownIndex
(
8
,
true
),
1
);
ASSERT_EQ
(
table
.
AutoGrownIndex
(
8
,
true
),
1
);
ASSERT_EQ
(
table
.
AutoGrownIndex
(
6
,
true
),
2
);
ASSERT_TRUE
(
table
.
HasKey
(
10
));
ASSERT_TRUE
(
table
.
HasKey
(
8
));
ASSERT_TRUE
(
table
.
HasKey
(
6
));
ASSERT_EQ
(
table
.
rows
().
size
(),
3
);
framework
::
Tensor
ids
;
ids
.
Resize
(
framework
::
make_ddim
({
4
}));
auto
*
ids_data
=
ids
.
mutable_data
<
int64_t
>
(
cpu
);
ids_data
[
0
]
=
static_cast
<
int64_t
>
(
6
);
ids_data
[
1
]
=
static_cast
<
int64_t
>
(
6
);
ids_data
[
2
]
=
static_cast
<
int64_t
>
(
8
);
ids_data
[
3
]
=
static_cast
<
int64_t
>
(
10
);
int64_t
key
=
10000
;
int64_t
non_key
=
999
;
framework
::
Tensor
value
;
value
.
Resize
(
framework
::
make_ddim
({
1
,
100
}));
auto
ptr
=
value
.
mutable_data
<
float
>
(
cpu
);
ptr
[
0
]
=
static_cast
<
float
>
(
10
);
framework
::
Tensor
get_value
;
auto
*
value_data
=
get_value
.
mutable_data
<
float
>
(
framework
::
make_ddim
({
4
,
embedding_width
}),
cpu
);
table
.
Get
(
ids
,
&
get_value
);
ASSERT_EQ
(
table
.
rows
().
size
(),
static_cast
<
size_t
>
(
1
));
ASSERT_EQ
(
table
.
HasKey
(
key
),
false
);
for
(
int
j
=
0
;
j
<
embedding_width
;
++
j
)
{
ASSERT_EQ
(
value_data
[
0
*
embedding_width
+
j
],
2
);
}
for
(
int
j
=
0
;
j
<
embedding_width
;
++
j
)
{
ASSERT_EQ
(
value_data
[
1
*
embedding_width
+
j
],
2
);
}
for
(
int
j
=
0
;
j
<
embedding_width
;
++
j
)
{
ASSERT_EQ
(
value_data
[
2
*
embedding_width
+
j
],
1
);
}
for
(
int
j
=
0
;
j
<
embedding_width
;
++
j
)
{
ASSERT_EQ
(
value_data
[
3
*
embedding_width
+
j
],
0
);
}
}
table
.
Set
(
key
,
value
);
void
f1
(
SelectedRows
*
table
,
int
table_size
)
{
for
(
int
i
=
1000000
;
i
>
0
;
--
i
)
{
auto
id
=
i
%
table_size
;
int64_t
index1
=
table
->
AutoGrownIndex
(
id
,
true
);
int64_t
index2
=
table
->
AutoGrownIndex
(
id
,
false
);
int64_t
index3
=
table
->
AutoGrownIndex
(
id
,
true
);
ASSERT_EQ
(
index1
,
index2
);
ASSERT_EQ
(
index2
,
index3
);
}
}
ASSERT_EQ
(
table
.
rows
().
size
(),
static_cast
<
size_t
>
(
2
));
ASSERT_EQ
(
table
.
HasKey
(
key
),
true
);
// check re-allocate
ASSERT_EQ
(
table
.
value
().
dims
()[
0
],
static_cast
<
int64_t
>
(
4
));
void
f2
(
SelectedRows
*
table
,
int
table_size
)
{
for
(
int
i
=
0
;
i
<
1000000
;
++
i
)
{
auto
id
=
i
%
table_size
;
int64_t
index1
=
table
->
AutoGrownIndex
(
id
,
true
);
int64_t
index2
=
table
->
AutoGrownIndex
(
id
,
false
);
int64_t
index3
=
table
->
AutoGrownIndex
(
id
,
true
);
ASSERT_EQ
(
index1
,
index2
);
ASSERT_EQ
(
index2
,
index3
);
}
}
framework
::
Tensor
get_value
;
get_value
.
mutable_data
<
float
>
(
framework
::
make_ddim
({
2
,
100
}),
cpu
);
std
::
vector
<
int64_t
>
keys
({
non_key
,
key
});
auto
non_key_pairs
=
table
.
Get
(
keys
,
&
get_value
);
void
f3
(
SelectedRows
*
table
,
int
table_size
)
{
clock_t
t1
=
clock
();
for
(
int
i
=
100000
;
i
>
0
;
--
i
)
{
auto
id1
=
table
->
AutoGrownIndex
(
i
%
table_size
,
true
);
auto
id2
=
table
->
Index
(
i
%
table_size
);
ASSERT_EQ
(
id1
,
id2
);
}
clock_t
t2
=
clock
();
std
::
cout
<<
"f3 run time:"
<<
t2
-
t1
<<
std
::
endl
;
}
void
f4
(
SelectedRows
*
table
,
int
table_size
)
{
clock_t
t1
=
clock
();
for
(
int
i
=
0
;
i
<
100000
;
++
i
)
{
auto
id1
=
table
->
AutoGrownIndex
(
i
%
table_size
,
true
);
auto
id2
=
table
->
Index
(
i
%
table_size
);
ASSERT_EQ
(
id1
,
id2
);
}
clock_t
t2
=
clock
();
std
::
cout
<<
"f4 run time:"
<<
t2
-
t1
<<
std
::
endl
;
}
TEST
(
SelectedRows
,
MultiThreadAutoIndex
)
{
platform
::
CPUPlace
cpu
;
SelectedRows
table
;
int64_t
table_size
=
100000
;
int64_t
embedding_width
=
8
;
// initialize a sparse table
table
.
mutable_value
()
->
Resize
(
framework
::
make_ddim
({
table_size
,
embedding_width
}));
auto
*
data
=
table
.
mutable_value
()
->
mutable_data
<
float
>
(
cpu
);
for
(
int64_t
i
=
0
;
i
<
table_size
;
++
i
)
{
for
(
int64_t
j
=
0
;
j
<
embedding_width
;
++
j
)
{
data
[
i
*
embedding_width
+
j
]
=
static_cast
<
float
>
(
i
);
}
}
ASSERT_EQ
(
get_value
.
data
<
float
>
()[
100
],
static_cast
<
float
>
(
10
));
ASSERT_EQ
(
non_key_pairs
.
size
(),
static_cast
<
size_t
>
(
1
));
ASSERT_EQ
(
non_key_pairs
[
0
].
first
,
non_key
);
std
::
thread
t1
(
f1
,
&
table
,
table_size
);
std
::
thread
t11
(
f1
,
&
table
,
table_size
);
std
::
thread
t2
(
f2
,
&
table
,
table_size
);
std
::
thread
t22
(
f2
,
&
table
,
table_size
);
t1
.
join
();
t11
.
join
();
t2
.
join
();
t22
.
join
();
std
::
thread
t3
(
f3
,
&
table
,
table_size
);
std
::
thread
t4
(
f4
,
&
table
,
table_size
);
t3
.
join
();
t4
.
join
();
}
}
// namespace framework
...
...
paddle/fluid/operators/distributed/rpc_server_test.cc
浏览文件 @
f1bf1334
...
...
@@ -78,10 +78,9 @@ void InitTensorsOnServer(framework::Scope* scope, platform::CPUPlace* place,
int64_t
rows_numel
)
{
CreateVarsOnScope
(
scope
,
place
);
auto
w
=
scope
->
Var
(
"w"
)
->
GetMutable
<
framework
::
SelectedRows
>
();
auto
rows
=
w
->
mutable_rows
();
for
(
int64_t
i
=
0
;
i
<
rows_numel
;
++
i
)
rows
->
push_back
(
i
);
auto
w_value
=
w
->
mutable_value
();
w_value
->
Resize
({
rows_numel
,
10
});
for
(
int64_t
i
=
0
;
i
<
rows_numel
;
++
i
)
w
->
AutoGrownIndex
(
i
,
true
);
auto
ptr
=
w_value
->
mutable_data
<
float
>
(
*
place
);
...
...
paddle/fluid/operators/lookup_sparse_table_op.cc
浏览文件 @
f1bf1334
...
...
@@ -17,7 +17,6 @@ limitations under the License. */
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -46,10 +45,6 @@ class LookupSparseTableOp : public framework::OperatorBase {
auto
out_var
=
scope
.
FindVar
(
Output
(
"Out"
));
auto
w_var
=
scope
.
FindVar
(
Input
(
"W"
));
auto
ids_var
=
scope
.
FindVar
(
Input
(
"Ids"
));
unsigned
int
seed
=
static_cast
<
unsigned
int
>
(
Attr
<
int
>
(
"seed"
));
float
min
=
Attr
<
float
>
(
"min"
);
float
max
=
Attr
<
float
>
(
"max"
);
bool
auto_grown_table
=
Attr
<
bool
>
(
"auto_grown_table"
);
PADDLE_ENFORCE
(
out_var
->
IsType
<
framework
::
LoDTensor
>
(),
"The type of Out var should be LodTensor."
);
...
...
@@ -60,46 +55,17 @@ class LookupSparseTableOp : public framework::OperatorBase {
auto
&
ids_t
=
ids_var
->
Get
<
framework
::
LoDTensor
>
();
auto
out_t
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
w_t
=
w_var
->
GetMutable
<
framework
::
SelectedRows
>
();
std
::
vector
<
int64_t
>
keys
;
keys
.
resize
(
ids_t
.
numel
());
for
(
int64_t
i
=
0
;
i
<
ids_t
.
numel
();
++
i
)
{
keys
[
i
]
=
ids_t
.
data
<
int64_t
>
()[
i
];
}
// TODO(Yancey1989): support CUDA Place for the sparse table
platform
::
CPUPlace
cpu
;
auto
out_shape
=
w_t
->
value
().
dims
();
out_shape
[
0
]
=
keys
.
size
();
out_shape
[
0
]
=
ids_t
.
numel
();
out_t
->
Resize
(
out_shape
);
out_t
->
mutable_data
(
cpu
,
w_t
->
value
().
type
());
PADDLE_ENFORCE_EQ
(
framework
::
ToDataType
(
w_t
->
value
().
type
()),
framework
::
proto
::
VarType
::
FP32
,
"The sparse table only support FP32"
);
auto
non_keys_pair
=
w_t
->
Get
(
keys
,
out_t
);
if
(
!
auto_grown_table
)
{
PADDLE_ENFORCE_EQ
(
non_keys_pair
.
size
(),
static_cast
<
size_t
>
(
0
),
"there is some keys does exists in the sparse table."
);
}
auto
value_shape
=
w_t
->
value
().
dims
();
value_shape
[
0
]
=
1
;
for
(
const
auto
&
it
:
non_keys_pair
)
{
const
auto
key
=
it
.
first
;
const
auto
index
=
it
.
second
;
framework
::
Tensor
value
;
value
.
Resize
(
value_shape
);
auto
data
=
value
.
mutable_data
<
float
>
(
cpu
);
std
::
minstd_rand
engine
;
engine
.
seed
(
seed
);
std
::
uniform_real_distribution
<
float
>
dist
(
min
,
max
);
int64_t
size
=
value
.
numel
();
for
(
int64_t
i
=
0
;
i
<
size
;
++
i
)
{
data
[
i
]
=
dist
(
engine
);
}
w_t
->
Set
(
key
,
value
);
memory
::
Copy
(
cpu
,
out_t
->
mutable_data
<
float
>
(
cpu
)
+
index
*
value
.
numel
(),
cpu
,
value
.
data
<
float
>
(),
value
.
numel
()
*
sizeof
(
float
));
}
w_t
->
Get
(
ids_t
,
out_t
,
true
);
}
};
...
...
@@ -121,21 +87,6 @@ class LookupSparseTableOpMaker : public framework::OpProtoAndCheckerMaker {
"Otherwise the given value indicates padding the output "
"with zeros whenever lookup encounters it in Ids."
)
.
SetDefault
(
kNoPadding
);
AddAttr
<
float
>
(
"min"
,
"(float, default -1.0) "
"Minimum value of uniform random"
)
.
SetDefault
(
-
1.0
f
);
AddAttr
<
float
>
(
"max"
,
"(float, default 1.0) "
"Maximum value of uniform random"
)
.
SetDefault
(
1.0
f
);
AddAttr
<
int
>
(
"seed"
,
"(int, default 0) "
"Random seed used for generating samples. "
"0 means use a seed generated by the system."
"Note that if seed is not 0, this operator will always "
"generate the same random numbers every time."
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"auto_grown_table"
,
"(bool default false)"
"Whether create new value if for nonexistent key."
)
...
...
paddle/fluid/operators/sgd_op.h
浏览文件 @
f1bf1334
...
...
@@ -111,7 +111,7 @@ class SGDOpKernel : public framework::OpKernel<T> {
for
(
size_t
i
=
0
;
i
<
grad
.
rows
().
size
();
i
++
)
{
PADDLE_ENFORCE
(
grad
.
rows
()[
i
]
<
grad
.
height
(),
"Input rows index should less than height"
);
int64_t
id_index
=
param
.
Index
(
grad
.
rows
()[
i
]
);
int64_t
id_index
=
param
_out
->
AutoGrownIndex
(
grad
.
rows
()[
i
],
false
);
PADDLE_ENFORCE_GE
(
id_index
,
static_cast
<
int64_t
>
(
0
),
"id should be in the table"
);
for
(
int64_t
j
=
0
;
j
<
grad_row_width
;
j
++
)
{
...
...
paddle/fluid/operators/uniform_random_op.cc
浏览文件 @
f1bf1334
...
...
@@ -30,8 +30,10 @@ class CPUUniformRandomKernel : public framework::OpKernel<T> {
tensor
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
}
else
if
(
out_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
shape
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"shape"
);
tensor
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
()
->
mutable_value
();
auto
*
selected_rows
=
out_var
->
GetMutable
<
framework
::
SelectedRows
>
();
tensor
=
selected_rows
->
mutable_value
();
tensor
->
Resize
(
framework
::
make_ddim
(
shape
));
selected_rows
->
mutable_rows
()
->
reserve
(
shape
[
0
]);
}
else
{
PADDLE_THROW
(
"uniform_random_op's output only"
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
f1bf1334
...
...
@@ -249,6 +249,7 @@ PYBIND11_PLUGIN(core) {
self
.
set_rows
(
new_rows
);
#endif
})
.
def
(
"sync_index"
,
[](
SelectedRows
&
instance
)
{
instance
.
SyncIndex
();
})
.
def
(
"rows"
,
[](
SelectedRows
&
self
)
{
auto
rows
=
self
.
rows
();
std
::
vector
<
int64_t
>
new_rows
;
...
...
python/paddle/fluid/tests/unittests/test_lookup_sparse_table_op.py
浏览文件 @
f1bf1334
...
...
@@ -21,36 +21,27 @@ import paddle.fluid.core as core
from
paddle.fluid.op
import
Operator
def
output_hist
(
out
):
hist
,
_
=
np
.
histogram
(
out
,
range
=
(
-
5
,
10
))
hist
=
hist
.
astype
(
"float32"
)
hist
/=
float
(
out
.
size
)
prob
=
0.1
*
np
.
ones
((
10
))
return
hist
,
prob
class
TestLookupSpraseTable
(
OpTest
):
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
# create and initialize Id Variable
ids
=
scope
.
var
(
"Ids"
).
get_tensor
()
ids_array
=
np
.
array
([
0
,
2
,
3
,
5
,
100
]).
astype
(
"int64"
)
ids
.
set
(
ids_array
,
place
)
# create and initialize W Variable
rows
=
[
0
,
1
,
2
,
3
,
4
,
5
,
6
]
row_numel
=
10000
table_size
=
10000
row_numel
=
8
w_selected_rows
=
scope
.
var
(
'W'
).
get_selected_rows
()
w_selected_rows
.
set_height
(
len
(
rows
))
w_selected_rows
.
set_rows
(
rows
)
w_array
=
np
.
ones
((
len
(
rows
),
row_numel
)).
astype
(
"float32"
)
for
i
in
range
(
len
(
rows
)):
w_selected_rows
.
set_height
(
table_size
)
w_array
=
np
.
ones
((
table_size
,
row_numel
)).
astype
(
"float32"
)
for
i
in
range
(
table_size
):
w_array
[
i
]
*=
i
w_tensor
=
w_selected_rows
.
get_tensor
()
w_tensor
.
set
(
w_array
,
place
)
# create and initialize Id Variable
ids
=
scope
.
var
(
"Ids"
).
get_tensor
()
ids_array1
=
np
.
array
([
0
,
2
,
3
,
2
,
5
,
0
,
100
]).
astype
(
"int64"
)
ids
.
set
(
ids_array1
,
place
)
# create Out Variable
out_tensor
=
scope
.
var
(
'Out'
).
get_tensor
()
...
...
@@ -66,16 +57,28 @@ class TestLookupSpraseTable(OpTest):
lookup_table
.
run
(
scope
,
place
)
# get result from Out
result_array
=
np
.
array
(
out_tensor
)
result_array
1
=
np
.
array
(
out_tensor
)
# all(): return True if all elements of the iterable are true (or if the iterable is empty)
for
idx
,
row
in
enumerate
(
ids_array
[:
-
2
]):
assert
(
row
==
result_array
[
idx
]).
all
()
assert
(
result_array1
[
0
]
==
w_array
[
0
]).
all
()
assert
(
result_array1
[
1
]
==
w_array
[
1
]).
all
()
assert
(
result_array1
[
2
]
==
w_array
[
2
]).
all
()
assert
(
result_array1
[
3
]
==
w_array
[
1
]).
all
()
assert
(
result_array1
[
4
]
==
w_array
[
3
]).
all
()
assert
(
result_array1
[
5
]
==
w_array
[
0
]).
all
()
assert
(
result_array1
[
6
]
==
w_array
[
4
]).
all
()
# create and initialize Id Variable
ids
=
scope
.
var
(
"Ids"
).
get_tensor
()
ids_array2
=
np
.
array
([
4
,
2
,
3
,
7
,
100000
]).
astype
(
"int64"
)
ids
.
set
(
ids_array2
,
place
)
lookup_table
.
run
(
scope
,
place
)
# check the random value
hist
,
prob
=
output_hist
(
result_array
[
-
1
])
self
.
assertTrue
(
np
.
allclose
(
hist
,
prob
,
rtol
=
0
,
atol
=
0.01
),
"hist: "
+
str
(
hist
))
result_array2
=
np
.
array
(
out_tensor
)
assert
(
result_array2
[
0
]
==
w_array
[
5
]).
all
()
assert
(
result_array2
[
1
]
==
w_array
[
1
]).
all
()
assert
(
result_array2
[
2
]
==
w_array
[
2
]).
all
()
assert
(
result_array2
[
3
]
==
w_array
[
6
]).
all
()
assert
(
result_array2
[
4
]
==
w_array
[
7
]).
all
()
def
test_w_is_selected_rows
(
self
):
places
=
[
core
.
CPUPlace
()]
...
...
python/paddle/fluid/tests/unittests/test_sgd_op.py
浏览文件 @
f1bf1334
...
...
@@ -126,6 +126,7 @@ class TestSGDOpOptimizeSelectedRows(unittest.TestCase):
w_selected_rows
=
scope
.
var
(
'Param'
).
get_selected_rows
()
w_selected_rows
.
set_height
(
len
(
param_rows
))
w_selected_rows
.
set_rows
(
param_rows
)
w_selected_rows
.
sync_index
()
w_array
=
np
.
ones
((
len
(
param_rows
),
row_width
)).
astype
(
"float32"
)
for
i
in
range
(
len
(
param_rows
)):
w_array
[
i
]
*=
i
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录