Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f0c3c498
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f0c3c498
编写于
10月 27, 2017
作者:
X
xzl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test exconv layerGrad and im2col
上级
328169a9
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
92 addition
and
77 deletion
+92
-77
paddle/function/Im2ColTest.cpp
paddle/function/Im2ColTest.cpp
+91
-76
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+1
-1
未找到文件。
paddle/function/Im2ColTest.cpp
浏览文件 @
f0c3c498
...
...
@@ -29,82 +29,97 @@ void TestIm2ColFunctor() {
for
(
size_t
filterWidth
:
{
3
,
7
})
{
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
inputHeight
<=
filterHeight
||
inputWidth
<=
filterWidth
)
break
;
if
(
padding
>=
filterHeight
||
padding
>=
filterWidth
)
break
;
size_t
outputHeight
=
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
stride
;
size_t
outputWidth
=
(
inputWidth
-
filterWidth
+
2
*
padding
+
stride
)
/
stride
;
TensorShape
imShape
=
TensorShape
({
channels
,
inputHeight
,
inputWidth
});
TensorShape
colShape1
=
TensorShape
({
channels
,
filterHeight
,
filterWidth
,
outputHeight
,
outputWidth
});
TensorShape
colShape2
=
TensorShape
({
outputHeight
,
outputWidth
,
channels
,
filterHeight
,
filterWidth
});
size_t
height
=
channels
*
filterHeight
*
filterWidth
;
size_t
width
=
outputHeight
*
outputWidth
;
VectorPtr
input1
=
Vector
::
create
(
imShape
.
getElements
(),
false
);
VectorPtr
input2
=
Vector
::
create
(
imShape
.
getElements
(),
false
);
MatrixPtr
output1
=
Matrix
::
create
(
height
,
width
,
false
,
false
);
MatrixPtr
output2
=
Matrix
::
create
(
width
,
height
,
false
,
false
);
input1
->
uniform
(
0.001
,
1
);
input2
->
copyFrom
(
*
input1
);
Im2ColFunctor
<
kCFO
,
Device
,
T
>
im2Col1
;
Im2ColFunctor
<
kOCF
,
Device
,
T
>
im2Col2
;
im2Col1
(
input1
->
getData
(),
imShape
,
output1
->
getData
(),
colShape1
,
stride
,
stride
,
padding
,
padding
);
im2Col2
(
input2
->
getData
(),
imShape
,
output2
->
getData
(),
colShape2
,
stride
,
stride
,
padding
,
padding
);
// The transposition of the result of ColFormat == kCFO
// is equal to the result of ColFormat == kOCF.
MatrixPtr
test
;
output2
->
transpose
(
test
,
true
);
autotest
::
TensorCheckErr
(
*
output1
,
*
test
);
Col2ImFunctor
<
kCFO
,
Device
,
T
>
col2Im1
;
Col2ImFunctor
<
kOCF
,
Device
,
T
>
col2Im2
;
col2Im1
(
input1
->
getData
(),
imShape
,
output1
->
getData
(),
colShape1
,
stride
,
stride
,
padding
,
padding
);
col2Im2
(
input2
->
getData
(),
imShape
,
output2
->
getData
(),
colShape2
,
stride
,
stride
,
padding
,
padding
);
autotest
::
TensorCheckErr
(
*
input1
,
*
input2
);
for
(
size_t
dilation
:
{
1
,
3
})
{
size_t
filterSizeH
=
(
filterHeight
-
1
)
*
dilation
+
1
;
size_t
filterSizeW
=
(
filterWidth
-
1
)
*
dilation
+
1
;
if
(
inputHeight
<=
filterSizeH
||
inputWidth
<=
filterSizeW
)
break
;
if
(
padding
>=
filterSizeH
||
padding
>=
filterSizeW
)
break
;
size_t
outputHeight
=
(
inputHeight
-
filterSizeH
+
2
*
padding
)
/
stride
+
1
;
size_t
outputWidth
=
(
inputWidth
-
filterSizeW
+
2
*
padding
)
/
stride
+
1
;
TensorShape
imShape
=
TensorShape
({
channels
,
inputHeight
,
inputWidth
});
TensorShape
colShape1
=
TensorShape
({
channels
,
filterHeight
,
filterWidth
,
outputHeight
,
outputWidth
});
TensorShape
colShape2
=
TensorShape
({
outputHeight
,
outputWidth
,
channels
,
filterHeight
,
filterWidth
});
size_t
height
=
channels
*
filterHeight
*
filterWidth
;
size_t
width
=
outputHeight
*
outputWidth
;
VectorPtr
input1
=
Vector
::
create
(
imShape
.
getElements
(),
false
);
VectorPtr
input2
=
Vector
::
create
(
imShape
.
getElements
(),
false
);
MatrixPtr
output1
=
Matrix
::
create
(
height
,
width
,
false
,
false
);
MatrixPtr
output2
=
Matrix
::
create
(
width
,
height
,
false
,
false
);
input1
->
uniform
(
0.001
,
1
);
input2
->
copyFrom
(
*
input1
);
Im2ColFunctor
<
kCFO
,
Device
,
T
>
im2Col1
;
Im2ColFunctor
<
kOCF
,
Device
,
T
>
im2Col2
;
im2Col1
(
input1
->
getData
(),
imShape
,
output1
->
getData
(),
colShape1
,
stride
,
stride
,
padding
,
padding
,
dilation
,
dilation
);
im2Col2
(
input2
->
getData
(),
imShape
,
output2
->
getData
(),
colShape2
,
stride
,
stride
,
padding
,
padding
,
dilation
,
dilation
);
// The transposition of the result of ColFormat == kCFO
// is equal to the result of ColFormat == kOCF.
MatrixPtr
test
;
output2
->
transpose
(
test
,
true
);
autotest
::
TensorCheckErr
(
*
output1
,
*
test
);
Col2ImFunctor
<
kCFO
,
Device
,
T
>
col2Im1
;
Col2ImFunctor
<
kOCF
,
Device
,
T
>
col2Im2
;
col2Im1
(
input1
->
getData
(),
imShape
,
output1
->
getData
(),
colShape1
,
stride
,
stride
,
padding
,
padding
,
dilation
,
dilation
);
col2Im2
(
input2
->
getData
(),
imShape
,
output2
->
getData
(),
colShape2
,
stride
,
stride
,
padding
,
padding
,
dilation
,
dilation
);
autotest
::
TensorCheckErr
(
*
input1
,
*
input2
);
}
}
}
}
...
...
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
f0c3c498
...
...
@@ -434,7 +434,7 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
int
dilation
=
1
;
int
dilation
=
2
;
if
(
type
==
"cudnn_conv"
)
{
#if CUDNN_VERSION >= 6000
dilation
=
2
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录