Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f0a5a4b7
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f0a5a4b7
编写于
5月 12, 2022
作者:
F
Feng Ni
提交者:
GitHub
5月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] fix pphuman visualize_video (#5949)
上级
4e33a499
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
12 addition
and
11 deletion
+12
-11
configs/mot/bytetrack/README_cn.md
configs/mot/bytetrack/README_cn.md
+1
-1
deploy/pphuman/docs/mot.md
deploy/pphuman/docs/mot.md
+2
-2
deploy/pphuman/pipeline.py
deploy/pphuman/pipeline.py
+3
-2
deploy/pptracking/python/README.md
deploy/pptracking/python/README.md
+6
-6
未找到文件。
configs/mot/bytetrack/README_cn.md
浏览文件 @
f0a5a4b7
...
...
@@ -86,7 +86,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/deepsort/reid
### 4. 用导出的模型基于Python去预测
```
bash
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
output_inference/ppyoloe_crn_l_36e_640x640_mot17half/
--tracker_config
=
tracker_config.yml
--video_file
={
your video name
}
.mp4
--device
=
GPU
--scaled
=
True
--save_mot_txts
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
output_inference/ppyoloe_crn_l_36e_640x640_mot17half/
--tracker_config
=
deploy/pptracking/python/
tracker_config.yml
--video_file
={
your video name
}
.mp4
--device
=
GPU
--scaled
=
True
--save_mot_txts
```
**注意:**
-
跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加
`--save_mot_txts`
(对每个视频保存一个txt)或
`--save_mot_txt_per_img`
(对每张图片保存一个txt)表示保存跟踪结果的txt文件,或
`--save_images`
表示保存跟踪结果可视化图片。
...
...
deploy/pphuman/docs/mot.md
浏览文件 @
f0a5a4b7
...
...
@@ -34,9 +34,9 @@ python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml \
python
deploy
/
pphuman
/
pipeline
.
py
--
config
deploy
/
pphuman
/
config
/
infer_cfg
.
yml
\
--
video_file
=
test_video
.
mp4
\
--
device
=
gpu
\
--
model_dir
det
=
ppyoloe
/
--
do_entrance_counting
\
--
draw_center_traj
--
draw_center_traj
\
--
model_dir
det
=
ppyoloe
/
```
**注意:**
...
...
deploy/pphuman/pipeline.py
浏览文件 @
f0a5a4b7
...
...
@@ -537,8 +537,9 @@ class PipePredictor(object):
self
.
pipe_timer
.
total_time
.
end
()
if
self
.
cfg
[
'visual'
]:
_
,
_
,
fps
=
self
.
pipe_timer
.
get_total_time
()
im
=
self
.
visualize_video
(
frame
,
mot_res
,
frame_id
,
fps
)
# visualize
im
=
self
.
visualize_video
(
frame
,
mot_res
,
frame_id
,
fps
,
entrance
,
records
,
center_traj
)
# visualize
writer
.
write
(
im
)
if
self
.
file_name
is
None
:
# use camera_id
cv2
.
imshow
(
'PPHuman'
,
im
)
...
...
deploy/pptracking/python/README.md
浏览文件 @
f0a5a4b7
...
...
@@ -89,9 +89,9 @@ CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/deepsort/reid
wget https://bj.bcebos.com/v1/paddledet/data/mot/demo/mot17_demo.mp4
# 用导出的PPYOLOv2行人检测模型和PPLCNet ReID模型
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
output_inference/ppyolov2_r50vd_dcn_365e_640x640_mot17half/
--reid_model_dir
=
output_inference/deepsort_pplcnet/
--tracker_config
=
tracker_config.yml
--video_file
=
mot17_demo.mp4
--device
=
GPU
--threshold
=
0.5
--save_mot_txts
--save_images
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
output_inference/ppyolov2_r50vd_dcn_365e_640x640_mot17half/
--reid_model_dir
=
output_inference/deepsort_pplcnet/
--tracker_config
=
deploy/pptracking/python/
tracker_config.yml
--video_file
=
mot17_demo.mp4
--device
=
GPU
--threshold
=
0.5
--save_mot_txts
--save_images
# 或用导出的PPYOLOe行人检测模型和PPLCNet ReID模型
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
output_inference/ppyoloe_crn_l_36e_640x640_mot17half/
--reid_model_dir
=
output_inference/deepsort_pplcnet/
--tracker_config
=
tracker_config.yml
--video_file
=
mot17_demo.mp4
--device
=
GPU
--threshold
=
0.5
--save_mot_txts
--save_images
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
output_inference/ppyoloe_crn_l_36e_640x640_mot17half/
--reid_model_dir
=
output_inference/deepsort_pplcnet/
--tracker_config
=
deploy/pptracking/python/
tracker_config.yml
--video_file
=
mot17_demo.mp4
--device
=
GPU
--threshold
=
0.5
--save_mot_txts
--save_images
```
### 2.3 用导出的模型基于Python去预测车辆跟踪
...
...
@@ -108,10 +108,10 @@ wget https://paddledet.bj.bcebos.com/models/mot/deepsort/deepsort_pplcnet_vehicl
tar
-xvf
deepsort_pplcnet_vehicle.tar
# 用导出的PicoDet车辆检测模型和PPLCNet车辆ReID模型
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
picodet_l_640_aic21mtmct_vehicle/
--reid_model_dir
=
deepsort_pplcnet_vehicle/
--tracker_config
=
tracker_config.yml
--device
=
GPU
--threshold
=
0.5
--video_file
={
your video
}
.mp4
--save_mot_txts
--save_images
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
picodet_l_640_aic21mtmct_vehicle/
--reid_model_dir
=
deepsort_pplcnet_vehicle/
--tracker_config
=
deploy/pptracking/python/
tracker_config.yml
--device
=
GPU
--threshold
=
0.5
--video_file
={
your video
}
.mp4
--save_mot_txts
--save_images
# 用导出的PP-YOLOv2车辆检测模型和PPLCNet车辆ReID模型
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
ppyolov2_r50vd_dcn_365e_aic21mtmct_vehicle/
--reid_model_dir
=
deepsort_pplcnet_vehicle/
--tracker_config
=
tracker_config.yml
--device
=
GPU
--threshold
=
0.5
--video_file
={
your video
}
.mp4
--save_mot_txts
--save_images
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
ppyolov2_r50vd_dcn_365e_aic21mtmct_vehicle/
--reid_model_dir
=
deepsort_pplcnet_vehicle/
--tracker_config
=
deploy/pptracking/python/
tracker_config.yml
--device
=
GPU
--threshold
=
0.5
--video_file
={
your video
}
.mp4
--save_mot_txts
--save_images
```
**注意:**
...
...
@@ -135,10 +135,10 @@ CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/deepsort/dete
wget https://bj.bcebos.com/v1/paddledet/data/mot/demo/mot17_demo.mp4
# 用导出的PPYOLOe行人检测模型
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
output_inference/ppyoloe_crn_l_36e_640x640_mot17half/
--tracker_config
=
tracker_config.yml
--video_file
=
mot17_demo.mp4
--device
=
GPU
--threshold
=
0.5
--save_mot_txts
--save_images
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
output_inference/ppyoloe_crn_l_36e_640x640_mot17half/
--tracker_config
=
deploy/pptracking/python/
tracker_config.yml
--video_file
=
mot17_demo.mp4
--device
=
GPU
--threshold
=
0.5
--save_mot_txts
--save_images
# 用导出的PPYOLOe行人检测模型和PPLCNet ReID模型
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
output_inference/ppyoloe_crn_l_36e_640x640_mot17half/
--reid_model_dir
=
output_inference/deepsort_pplcnet/
--tracker_config
=
tracker_config.yml
--video_file
=
mot17_demo.mp4
--device
=
GPU
--threshold
=
0.5
--save_mot_txts
--save_images
python deploy/pptracking/python/mot_sde_infer.py
--model_dir
=
output_inference/ppyoloe_crn_l_36e_640x640_mot17half/
--reid_model_dir
=
output_inference/deepsort_pplcnet/
--tracker_config
=
deploy/pptracking/python/
tracker_config.yml
--video_file
=
mot17_demo.mp4
--device
=
GPU
--threshold
=
0.5
--save_mot_txts
--save_images
```
**注意:**
-
ByteTrack模型是加载导出的检测器和单独配置的
`--tracker_config`
文件运行的,为了实时跟踪所以不需要reid模型,
`--reid_model_dir`
表示reid导出模型的路径,默认为空,加不加具体视效果而定;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录