提交 f0177a1e 编写于 作者: J jerrywgz

refine doc, test=develop

上级 21e0d35c
...@@ -328,7 +328,7 @@ paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varar ...@@ -328,7 +328,7 @@ paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varar
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '991e934c3e09abf0edec7c9c978b4691')) paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '991e934c3e09abf0edec7c9c978b4691'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '397e9e02b451d99c56e20f268fa03f2e')) paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '397e9e02b451d99c56e20f268fa03f2e'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0')) paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'fa7008889611447edd1bac71dd42b558')) paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'fdffe52577f7e74c090b030867fefc11'))
paddle.fluid.layers.accuracy (ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)), ('document', '9808534c12c5e739a10f73ebb0b4eafd')) paddle.fluid.layers.accuracy (ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)), ('document', '9808534c12c5e739a10f73ebb0b4eafd'))
paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)), ('document', 'e0e95334fce92d16c2d9db6e7caffc47')) paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)), ('document', 'e0e95334fce92d16c2d9db6e7caffc47'))
paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '98a5050bee8522fcea81aa795adaba51')) paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '98a5050bee8522fcea81aa795adaba51'))
......
...@@ -2231,21 +2231,23 @@ def distribute_fpn_proposals(fpn_rois, ...@@ -2231,21 +2231,23 @@ def distribute_fpn_proposals(fpn_rois,
refer_scale, refer_scale,
name=None): name=None):
""" """
Distribute all proposals into different fpn level, with respect to scale In Feature Pyramid Networks (FPN) models, it is needed to distribute all
of the proposals, the referring scale and the referring level. Besides, to proposals into different FPN level, with respect to scale of the proposals,
restore the order of proposals, we return an array which indicates the the referring scale and the referring level. Besides, to restore the order
original index of rois in current proposals. To compute fpn level for each of proposals, we return an array which indicates the original index of rois
roi, the formula is given as follows: in current proposals. To compute FPN level for each roi, the formula is
given as follows:
.. math:: .. math::
roi\_scale = \sqrt{BBoxArea(fpn\_roi)}
level = floor(\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level) roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
where BBoxArea is the area of each roi level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)
where BBoxArea is a function to compute the area of each roi.
Args: Args:
fpn_rois(variable): The input fpn_rois, the last dimension is 4. fpn_rois(variable): The input fpn_rois, the second dimension is 4.
min_level(int): The lowest level of FPN layer where the proposals come min_level(int): The lowest level of FPN layer where the proposals come
from. from.
max_level(int): The highest level of FPN layer where the proposals max_level(int): The highest level of FPN layer where the proposals
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册