Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
efe8d483
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
efe8d483
编写于
5月 18, 2021
作者:
G
George Ni
提交者:
GitHub
5月 18, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MOT] video infer (#3046)
* add video infer for TestMOTReader * format, test=documment_fix
上级
9db4a317
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
151 addition
and
147 deletion
+151
-147
configs/datasets/mot.yml
configs/datasets/mot.yml
+6
-2
configs/mot/jde/README.md
configs/mot/jde/README.md
+5
-3
configs/mot/jde/README_cn.md
configs/mot/jde/README_cn.md
+6
-4
configs/mot/jde/_base_/jde_reader_1088x608.yml
configs/mot/jde/_base_/jde_reader_1088x608.yml
+0
-1
configs/mot/jde/_base_/jde_reader_576x320.yml
configs/mot/jde/_base_/jde_reader_576x320.yml
+0
-1
configs/mot/jde/_base_/jde_reader_864x480.yml
configs/mot/jde/_base_/jde_reader_864x480.yml
+0
-1
ppdet/data/transform/mot_operators.py
ppdet/data/transform/mot_operators.py
+134
-2
ppdet/data/transform/operators.py
ppdet/data/transform/operators.py
+0
-133
未找到文件。
configs/datasets/mot.yml
浏览文件 @
efe8d483
...
...
@@ -2,10 +2,14 @@ metric: MOT
num_classes
:
1
MOTDataZoo
:
{
'
MOT15_train'
:
[
'
Venice-2'
,
'
KITTI-13'
,
'
KITTI-17'
,
'
ETH-Bahnhof'
,
'
ETH-Sunnyday'
,
'
PETS09-S2L1'
,
'
TUD-Campus'
,
'
TUD-Stadtmitte'
,
'
ADL-Rundle-6'
,
'
ADL-Rundle-8'
,
'
ETH-Pedcross2'
],
'
MOT15_train'
:
[
'
ADL-Rundle-6'
,
'
ADL-Rundle-8'
,
'
ETH-Bahnhof'
,
'
ETH-Pedcross2'
,
'
ETH-Sunnyday'
,
'
KITTI-13'
,
'
KITTI-17'
,
'
PETS09-S2L1'
,
'
TUD-Campus'
,
'
TUD-Stadtmitte'
,
'
Venice-2'
],
'
MOT15_test'
:
[
'
ADL-Rundle-1'
,
'
ADL-Rundle-3'
,
'
AVG-TownCentre'
,
'
ETH-Crossing'
,
'
ETH-Jelmoli'
,
'
ETH-Linthescher'
,
'
KITTI-16'
,
'
KITTI-19'
,
'
PETS09-S2L2'
,
'
TUD-Crossing'
,
'
Venice-1'
],
'
MOT16_train'
:
[
'
MOT16-02'
,
'
MOT16-04'
,
'
MOT16-05'
,
'
MOT16-09'
,
'
MOT16-10'
,
'
MOT16-11'
,
'
MOT16-13'
],
'
MOT16_test'
:
[
'
MOT16-01'
,
'
MOT16-03'
,
'
MOT16-06'
,
'
MOT16-07'
,
'
MOT16-08'
,
'
MOT16-12'
,
'
MOT16-14'
],
'
MOT17_train'
:
[
'
MOT17-02-SDP'
,
'
MOT17-04-SDP'
,
'
MOT17-05-SDP'
,
'
MOT17-09-SDP'
,
'
MOT17-10-SDP'
,
'
MOT17-11-SDP'
,
'
MOT17-13-SDP'
],
'
MOT17_test'
:
[
'
MOT17-01-SDP'
,
'
MOT17-03-SDP'
,
'
MOT17-06-SDP'
,
'
MOT17-07-SDP'
,
'
MOT17-08-SDP'
,
'
MOT17-12-SDP'
,
'
MOT17-14-SDP'
],
'
MOT20_train'
:
[
'
MOT20-01'
,
'
MOT20-02'
,
'
MOT20-03'
,
'
MOT20-05'
],
'
MOT20_test'
:
[
'
MOT20-04'
,
'
MOT20-06'
,
'
MOT20-07'
,
'
MOT20-08'
],
'
demo'
:
[
'
MOT16-02'
],
}
...
...
@@ -36,4 +40,4 @@ EvalMOTDataset:
TestMOTDataset
:
!MOTVideoDataset
dataset_dir
:
dataset/mot
keep_ori_im
:
False
keep_ori_im
:
True
# set True if save visualization images or video
configs/mot/jde/README.md
浏览文件 @
efe8d483
...
...
@@ -55,10 +55,12 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53
Inference a vidoe in single GPU with following commands.
```
bash
# inference on video
CUDA_VISIBLE_DEVICES
=
0 python tools/infer_mot.py configs/mot/jde/jde_darknet53_30e_1088x608.yml
-o
weights
=
https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
--video_file
={
your video name
}
.mp4
# inference on video and save a video
CUDA_VISIBLE_DEVICES
=
0 python tools/infer_mot.py
-c
configs/mot/jde/jde_darknet53_30e_1088x608.yml
-o
weights
=
https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
--video_file
={
your video name
}
.mp4
--save_videos
```
**Notes:**
Please make sure that
`ffmpeg`
is installed first.
## Citations
```
@article{wang2019towards,
...
...
configs/mot/jde/README_cn.md
浏览文件 @
efe8d483
...
...
@@ -25,7 +25,7 @@
| DarkNet53 | 864x480 | 70.1 | 65.4 | 1341 | 6454 | 25208 | - |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_864x480.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_864x480.yml
)
|
| DarkNet53 | 576x320 | 63.1 | 64.6 | 1357 | 7083 | 32312 | - |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_576x320.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/mot/jde/jde_darknet53_30e_576x320.yml
)
|
**
Notes
:**
**
注意
:**
JDE使用8个GPU进行训练,每个GPU上batch size为4,训练了30个epoches。
## 快速开始
...
...
@@ -52,13 +52,15 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53
### 3. 预测
使用单个GPU
过如下命令预测一个
视频
使用单个GPU
通过如下命令预测一个视频,并保存为
视频
```
bash
# 预测一个视频
CUDA_VISIBLE_DEVICES
=
0 python tools/infer_mot.py configs/mot/jde/jde_darknet53_30e_1088x608.yml
-o
weights
=
https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
--video_file
={
your video name
}
.mp4
CUDA_VISIBLE_DEVICES
=
0 python tools/infer_mot.py
-c
configs/mot/jde/jde_darknet53_30e_1088x608.yml
-o
weights
=
https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
--video_file
={
your video name
}
.mp4
--save_videos
```
**注意:**
请先确保已经安装了
`ffmpeg`
。
## 引用
```
@article{wang2019towards,
...
...
configs/mot/jde/_base_/jde_reader_1088x608.yml
浏览文件 @
efe8d483
...
...
@@ -72,7 +72,6 @@ TestMOTReader:
inputs_def
:
image_shape
:
[
3
,
608
,
1088
]
sample_transforms
:
-
Decode
:
{}
-
LetterBoxResize
:
{
target_size
:
[
608
,
1088
]}
-
NormalizeImage
:
{
mean
:
[
0
,
0
,
0
],
std
:
[
1
,
1
,
1
],
is_scale
:
True
}
-
Permute
:
{}
...
...
configs/mot/jde/_base_/jde_reader_576x320.yml
浏览文件 @
efe8d483
...
...
@@ -72,7 +72,6 @@ TestMOTReader:
inputs_def
:
image_shape
:
[
3
,
320
,
576
]
sample_transforms
:
-
Decode
:
{}
-
LetterBoxResize
:
{
target_size
:
[
320
,
576
]}
-
NormalizeImage
:
{
mean
:
[
0
,
0
,
0
],
std
:
[
1
,
1
,
1
],
is_scale
:
True
}
-
Permute
:
{}
...
...
configs/mot/jde/_base_/jde_reader_864x480.yml
浏览文件 @
efe8d483
...
...
@@ -72,7 +72,6 @@ TestMOTReader:
inputs_def
:
image_shape
:
[
3
,
480
,
864
]
sample_transforms
:
-
Decode
:
{}
-
LetterBoxResize
:
{
target_size
:
[
480
,
864
]}
-
NormalizeImage
:
{
mean
:
[
0
,
0
,
0
],
std
:
[
1
,
1
,
1
],
is_scale
:
True
}
-
Permute
:
{}
...
...
ppdet/data/transform/mot_operators.py
浏览文件 @
efe8d483
...
...
@@ -35,8 +35,8 @@ from ppdet.utils.logger import setup_logger
logger
=
setup_logger
(
__name__
)
__all__
=
[
'LetterBoxResize'
,
'
Gt2JDETargetThres'
,
'Gt2JDETargetMax
'
,
'Gt2FairMOTTarget'
'LetterBoxResize'
,
'
MOTRandomAffine'
,
'Gt2JDETargetThres
'
,
'Gt2
JDETargetMax'
,
'Gt2
FairMOTTarget'
]
...
...
@@ -113,6 +113,138 @@ class LetterBoxResize(BaseOperator):
return
sample
@
register_op
class
MOTRandomAffine
(
BaseOperator
):
"""
Affine transform to image and coords to achieve the rotate, scale and
shift effect for training image.
Args:
degrees (list[2]): the rotate range to apply, transform range is [min, max]
translate (list[2]): the translate range to apply, ransform range is [min, max]
scale (list[2]): the scale range to apply, transform range is [min, max]
shear (list[2]): the shear range to apply, transform range is [min, max]
borderValue (list[3]): value used in case of a constant border when appling
the perspective transformation
reject_outside (bool): reject warped bounding bboxes outside of image
Returns:
records(dict): contain the image and coords after tranformed
"""
def
__init__
(
self
,
degrees
=
(
-
5
,
5
),
translate
=
(
0.10
,
0.10
),
scale
=
(
0.50
,
1.20
),
shear
=
(
-
2
,
2
),
borderValue
=
(
127.5
,
127.5
,
127.5
),
reject_outside
=
True
):
super
(
MOTRandomAffine
,
self
).
__init__
()
self
.
degrees
=
degrees
self
.
translate
=
translate
self
.
scale
=
scale
self
.
shear
=
shear
self
.
borderValue
=
borderValue
self
.
reject_outside
=
reject_outside
def
apply
(
self
,
sample
,
context
=
None
):
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
border
=
0
# width of added border (optional)
img
=
sample
[
'image'
]
height
,
width
=
img
.
shape
[
0
],
img
.
shape
[
1
]
# Rotation and Scale
R
=
np
.
eye
(
3
)
a
=
random
.
random
()
*
(
self
.
degrees
[
1
]
-
self
.
degrees
[
0
]
)
+
self
.
degrees
[
0
]
s
=
random
.
random
()
*
(
self
.
scale
[
1
]
-
self
.
scale
[
0
])
+
self
.
scale
[
0
]
R
[:
2
]
=
cv2
.
getRotationMatrix2D
(
angle
=
a
,
center
=
(
width
/
2
,
height
/
2
),
scale
=
s
)
# Translation
T
=
np
.
eye
(
3
)
T
[
0
,
2
]
=
(
random
.
random
()
*
2
-
1
)
*
self
.
translate
[
0
]
*
height
+
border
# x translation (pixels)
T
[
1
,
2
]
=
(
random
.
random
()
*
2
-
1
)
*
self
.
translate
[
1
]
*
width
+
border
# y translation (pixels)
# Shear
S
=
np
.
eye
(
3
)
S
[
0
,
1
]
=
math
.
tan
((
random
.
random
()
*
(
self
.
shear
[
1
]
-
self
.
shear
[
0
])
+
self
.
shear
[
0
])
*
math
.
pi
/
180
)
# x shear (deg)
S
[
1
,
0
]
=
math
.
tan
((
random
.
random
()
*
(
self
.
shear
[
1
]
-
self
.
shear
[
0
])
+
self
.
shear
[
0
])
*
math
.
pi
/
180
)
# y shear (deg)
M
=
S
@
T
@
R
# Combined rotation matrix. ORDER IS IMPORTANT HERE!!
imw
=
cv2
.
warpPerspective
(
img
,
M
,
dsize
=
(
width
,
height
),
flags
=
cv2
.
INTER_LINEAR
,
borderValue
=
self
.
borderValue
)
# BGR order borderValue
if
'gt_bbox'
in
sample
and
len
(
sample
[
'gt_bbox'
])
>
0
:
targets
=
sample
[
'gt_bbox'
]
n
=
targets
.
shape
[
0
]
points
=
targets
.
copy
()
area0
=
(
points
[:,
2
]
-
points
[:,
0
])
*
(
points
[:,
3
]
-
points
[:,
1
])
# warp points
xy
=
np
.
ones
((
n
*
4
,
3
))
xy
[:,
:
2
]
=
points
[:,
[
0
,
1
,
2
,
3
,
0
,
3
,
2
,
1
]].
reshape
(
n
*
4
,
2
)
# x1y1, x2y2, x1y2, x2y1
xy
=
(
xy
@
M
.
T
)[:,
:
2
].
reshape
(
n
,
8
)
# create new boxes
x
=
xy
[:,
[
0
,
2
,
4
,
6
]]
y
=
xy
[:,
[
1
,
3
,
5
,
7
]]
xy
=
np
.
concatenate
(
(
x
.
min
(
1
),
y
.
min
(
1
),
x
.
max
(
1
),
y
.
max
(
1
))).
reshape
(
4
,
n
).
T
# apply angle-based reduction
radians
=
a
*
math
.
pi
/
180
reduction
=
max
(
abs
(
math
.
sin
(
radians
)),
abs
(
math
.
cos
(
radians
)))
**
0.5
x
=
(
xy
[:,
2
]
+
xy
[:,
0
])
/
2
y
=
(
xy
[:,
3
]
+
xy
[:,
1
])
/
2
w
=
(
xy
[:,
2
]
-
xy
[:,
0
])
*
reduction
h
=
(
xy
[:,
3
]
-
xy
[:,
1
])
*
reduction
xy
=
np
.
concatenate
(
(
x
-
w
/
2
,
y
-
h
/
2
,
x
+
w
/
2
,
y
+
h
/
2
)).
reshape
(
4
,
n
).
T
# reject warped points outside of image
if
self
.
reject_outside
:
np
.
clip
(
xy
[:,
0
],
0
,
width
,
out
=
xy
[:,
0
])
np
.
clip
(
xy
[:,
2
],
0
,
width
,
out
=
xy
[:,
2
])
np
.
clip
(
xy
[:,
1
],
0
,
height
,
out
=
xy
[:,
1
])
np
.
clip
(
xy
[:,
3
],
0
,
height
,
out
=
xy
[:,
3
])
w
=
xy
[:,
2
]
-
xy
[:,
0
]
h
=
xy
[:,
3
]
-
xy
[:,
1
]
area
=
w
*
h
ar
=
np
.
maximum
(
w
/
(
h
+
1e-16
),
h
/
(
w
+
1e-16
))
i
=
(
w
>
4
)
&
(
h
>
4
)
&
(
area
/
(
area0
+
1e-16
)
>
0.1
)
&
(
ar
<
10
)
if
sum
(
i
)
>
0
:
sample
[
'gt_bbox'
]
=
xy
[
i
].
astype
(
sample
[
'gt_bbox'
].
dtype
)
sample
[
'gt_class'
]
=
sample
[
'gt_class'
][
i
]
if
'difficult'
in
sample
:
sample
[
'difficult'
]
=
sample
[
'difficult'
][
i
]
if
'gt_ide'
in
sample
:
sample
[
'gt_ide'
]
=
sample
[
'gt_ide'
][
i
]
if
'is_crowd'
in
sample
:
sample
[
'is_crowd'
]
=
sample
[
'is_crowd'
][
i
]
sample
[
'image'
]
=
imw
return
sample
else
:
return
sample
@
register_op
class
Gt2JDETargetThres
(
BaseOperator
):
__shared__
=
[
'num_classes'
]
...
...
ppdet/data/transform/operators.py
浏览文件 @
efe8d483
...
...
@@ -2081,139 +2081,6 @@ class Norm2PixelBbox(BaseOperator):
return
sample
@
register_op
class
MOTRandomAffine
(
BaseOperator
):
"""
Affine transform to image and coords to achieve the rotate, scale and
shift effect for training image.
Args:
degrees (list[2]): the rotate range to apply, transform range is [min, max]
translate (list[2]): the translate range to apply, ransform range is [min, max]
scale (list[2]): the scale range to apply, transform range is [min, max]
shear (list[2]): the shear range to apply, transform range is [min, max]
borderValue (list[3]): value used in case of a constant border when appling
the perspective transformation
reject_outside (bool): reject warped bounding bboxes outside of image
Returns:
records(dict): contain the image and coords after tranformed
"""
def
__init__
(
self
,
degrees
=
(
-
5
,
5
),
translate
=
(
0.10
,
0.10
),
scale
=
(
0.50
,
1.20
),
shear
=
(
-
2
,
2
),
borderValue
=
(
127.5
,
127.5
,
127.5
),
reject_outside
=
True
):
super
(
MOTRandomAffine
,
self
).
__init__
()
self
.
degrees
=
degrees
self
.
translate
=
translate
self
.
scale
=
scale
self
.
shear
=
shear
self
.
borderValue
=
borderValue
self
.
reject_outside
=
reject_outside
def
apply
(
self
,
sample
,
context
=
None
):
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
border
=
0
# width of added border (optional)
img
=
sample
[
'image'
]
height
,
width
=
img
.
shape
[
0
],
img
.
shape
[
1
]
# Rotation and Scale
R
=
np
.
eye
(
3
)
a
=
random
.
random
()
*
(
self
.
degrees
[
1
]
-
self
.
degrees
[
0
]
)
+
self
.
degrees
[
0
]
s
=
random
.
random
()
*
(
self
.
scale
[
1
]
-
self
.
scale
[
0
])
+
self
.
scale
[
0
]
R
[:
2
]
=
cv2
.
getRotationMatrix2D
(
angle
=
a
,
center
=
(
width
/
2
,
height
/
2
),
scale
=
s
)
# Translation
T
=
np
.
eye
(
3
)
T
[
0
,
2
]
=
(
random
.
random
()
*
2
-
1
)
*
self
.
translate
[
0
]
*
height
+
border
# x translation (pixels)
T
[
1
,
2
]
=
(
random
.
random
()
*
2
-
1
)
*
self
.
translate
[
1
]
*
width
+
border
# y translation (pixels)
# Shear
S
=
np
.
eye
(
3
)
S
[
0
,
1
]
=
math
.
tan
((
random
.
random
()
*
(
self
.
shear
[
1
]
-
self
.
shear
[
0
])
+
self
.
shear
[
0
])
*
math
.
pi
/
180
)
# x shear (deg)
S
[
1
,
0
]
=
math
.
tan
((
random
.
random
()
*
(
self
.
shear
[
1
]
-
self
.
shear
[
0
])
+
self
.
shear
[
0
])
*
math
.
pi
/
180
)
# y shear (deg)
M
=
S
@
T
@
R
# Combined rotation matrix. ORDER IS IMPORTANT HERE!!
imw
=
cv2
.
warpPerspective
(
img
,
M
,
dsize
=
(
width
,
height
),
flags
=
cv2
.
INTER_LINEAR
,
borderValue
=
self
.
borderValue
)
# BGR order borderValue
if
'gt_bbox'
in
sample
and
len
(
sample
[
'gt_bbox'
])
>
0
:
targets
=
sample
[
'gt_bbox'
]
n
=
targets
.
shape
[
0
]
points
=
targets
.
copy
()
area0
=
(
points
[:,
2
]
-
points
[:,
0
])
*
(
points
[:,
3
]
-
points
[:,
1
])
# warp points
xy
=
np
.
ones
((
n
*
4
,
3
))
xy
[:,
:
2
]
=
points
[:,
[
0
,
1
,
2
,
3
,
0
,
3
,
2
,
1
]].
reshape
(
n
*
4
,
2
)
# x1y1, x2y2, x1y2, x2y1
xy
=
(
xy
@
M
.
T
)[:,
:
2
].
reshape
(
n
,
8
)
# create new boxes
x
=
xy
[:,
[
0
,
2
,
4
,
6
]]
y
=
xy
[:,
[
1
,
3
,
5
,
7
]]
xy
=
np
.
concatenate
(
(
x
.
min
(
1
),
y
.
min
(
1
),
x
.
max
(
1
),
y
.
max
(
1
))).
reshape
(
4
,
n
).
T
# apply angle-based reduction
radians
=
a
*
math
.
pi
/
180
reduction
=
max
(
abs
(
math
.
sin
(
radians
)),
abs
(
math
.
cos
(
radians
)))
**
0.5
x
=
(
xy
[:,
2
]
+
xy
[:,
0
])
/
2
y
=
(
xy
[:,
3
]
+
xy
[:,
1
])
/
2
w
=
(
xy
[:,
2
]
-
xy
[:,
0
])
*
reduction
h
=
(
xy
[:,
3
]
-
xy
[:,
1
])
*
reduction
xy
=
np
.
concatenate
(
(
x
-
w
/
2
,
y
-
h
/
2
,
x
+
w
/
2
,
y
+
h
/
2
)).
reshape
(
4
,
n
).
T
# reject warped points outside of image
if
self
.
reject_outside
:
np
.
clip
(
xy
[:,
0
],
0
,
width
,
out
=
xy
[:,
0
])
np
.
clip
(
xy
[:,
2
],
0
,
width
,
out
=
xy
[:,
2
])
np
.
clip
(
xy
[:,
1
],
0
,
height
,
out
=
xy
[:,
1
])
np
.
clip
(
xy
[:,
3
],
0
,
height
,
out
=
xy
[:,
3
])
w
=
xy
[:,
2
]
-
xy
[:,
0
]
h
=
xy
[:,
3
]
-
xy
[:,
1
]
area
=
w
*
h
ar
=
np
.
maximum
(
w
/
(
h
+
1e-16
),
h
/
(
w
+
1e-16
))
i
=
(
w
>
4
)
&
(
h
>
4
)
&
(
area
/
(
area0
+
1e-16
)
>
0.1
)
&
(
ar
<
10
)
if
sum
(
i
)
>
0
:
sample
[
'gt_bbox'
]
=
xy
[
i
].
astype
(
sample
[
'gt_bbox'
].
dtype
)
sample
[
'gt_class'
]
=
sample
[
'gt_class'
][
i
]
if
'difficult'
in
sample
:
sample
[
'difficult'
]
=
sample
[
'difficult'
][
i
]
if
'gt_ide'
in
sample
:
sample
[
'gt_ide'
]
=
sample
[
'gt_ide'
][
i
]
if
'is_crowd'
in
sample
:
sample
[
'is_crowd'
]
=
sample
[
'is_crowd'
][
i
]
sample
[
'image'
]
=
imw
return
sample
else
:
return
sample
@
register_op
class
BboxCXCYWH2XYXY
(
BaseOperator
):
"""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录