Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ef66baed
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ef66baed
编写于
5月 07, 2019
作者:
J
jerrywgz
提交者:
GitHub
5月 07, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine api doc (#17230)
* refine api comment, test=develop
上级
54636a19
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
36 addition
and
23 deletion
+36
-23
paddle/fluid/API.spec
paddle/fluid/API.spec
+5
-5
paddle/fluid/operators/maxout_op.cc
paddle/fluid/operators/maxout_op.cc
+9
-11
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+9
-7
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+13
-0
未找到文件。
paddle/fluid/API.spec
浏览文件 @
ef66baed
...
@@ -146,7 +146,7 @@ paddle.fluid.layers.pad (ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], va
...
@@ -146,7 +146,7 @@ paddle.fluid.layers.pad (ArgSpec(args=['x', 'paddings', 'pad_value', 'name'], va
paddle.fluid.layers.pad_constant_like (ArgSpec(args=['x', 'y', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', 'd2e1f45fef51b2c214e3f2aa8976c46c'))
paddle.fluid.layers.pad_constant_like (ArgSpec(args=['x', 'y', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0.0, None)), ('document', 'd2e1f45fef51b2c214e3f2aa8976c46c'))
paddle.fluid.layers.label_smooth (ArgSpec(args=['label', 'prior_dist', 'epsilon', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 0.1, 'float32', None)), ('document', '70c113658102a11cc5d8e3d45145737a'))
paddle.fluid.layers.label_smooth (ArgSpec(args=['label', 'prior_dist', 'epsilon', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, 0.1, 'float32', None)), ('document', '70c113658102a11cc5d8e3d45145737a'))
paddle.fluid.layers.roi_pool (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)), ('document', 'c317aa595deb31649083c8faa91cdb97'))
paddle.fluid.layers.roi_pool (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)), ('document', 'c317aa595deb31649083c8faa91cdb97'))
paddle.fluid.layers.roi_align (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None)), ('document', '
12c5bbb8b38c42e623fbc47611d766e1
'))
paddle.fluid.layers.roi_align (ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None)), ('document', '
3d8f4891c1d5e890a4e574371027dd35
'))
paddle.fluid.layers.dice_loss (ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,)), ('document', '1ba0508d573f65feecf3564dce22aa1d'))
paddle.fluid.layers.dice_loss (ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,)), ('document', '1ba0508d573f65feecf3564dce22aa1d'))
paddle.fluid.layers.image_resize (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None, True, 1)), ('document', 'f1bc5eb7198175d2b79197a681d98b43'))
paddle.fluid.layers.image_resize (ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None, True, 1)), ('document', 'f1bc5eb7198175d2b79197a681d98b43'))
paddle.fluid.layers.image_resize_short (ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',)), ('document', '099b9f051e6247ae661e4a7b4fd3f89a'))
paddle.fluid.layers.image_resize_short (ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',)), ('document', '099b9f051e6247ae661e4a7b4fd3f89a'))
...
@@ -206,7 +206,7 @@ paddle.fluid.layers.clip_by_norm (ArgSpec(args=['x', 'max_norm', 'name'], vararg
...
@@ -206,7 +206,7 @@ paddle.fluid.layers.clip_by_norm (ArgSpec(args=['x', 'max_norm', 'name'], vararg
paddle.fluid.layers.mean (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd638d915195ce86a8d7963b81110d4c8'))
paddle.fluid.layers.mean (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'd638d915195ce86a8d7963b81110d4c8'))
paddle.fluid.layers.mul (ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)), ('document', 'ccd37fa6b53f074adbfb732d738c4c2d'))
paddle.fluid.layers.mul (ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)), ('document', 'ccd37fa6b53f074adbfb732d738c4c2d'))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits (ArgSpec(args=['x', 'label', 'ignore_index', 'name', 'normalize'], varargs=None, keywords=None, defaults=(-100, None, False)), ('document', '180c284317ea45ef89a460d8d79c0b72'))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits (ArgSpec(args=['x', 'label', 'ignore_index', 'name', 'normalize'], varargs=None, keywords=None, defaults=(-100, None, False)), ('document', '180c284317ea45ef89a460d8d79c0b72'))
paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
891870d069a6aea746d34cc53b61690c
'))
paddle.fluid.layers.maxout (ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
71426e02d240d0daedae81a02ca1c191
'))
paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'a9221eaef53884a00654e028551b78e2'))
paddle.fluid.layers.space_to_depth (ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'a9221eaef53884a00654e028551b78e2'))
paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '51def402b8910e163cbace9d0c0526ed'))
paddle.fluid.layers.affine_grid (ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '51def402b8910e163cbace9d0c0526ed'))
paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '77a6d80aa5551ca70324fc975c44507f'))
paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '77a6d80aa5551ca70324fc975c44507f'))
...
@@ -340,7 +340,7 @@ paddle.fluid.layers.detection_output (ArgSpec(args=['loc', 'scores', 'prior_box'
...
@@ -340,7 +340,7 @@ paddle.fluid.layers.detection_output (ArgSpec(args=['loc', 'scores', 'prior_box'
paddle.fluid.layers.ssd_loss (ArgSpec(args=['location', 'confidence', 'gt_box', 'gt_label', 'prior_box', 'prior_box_var', 'background_label', 'overlap_threshold', 'neg_pos_ratio', 'neg_overlap', 'loc_loss_weight', 'conf_loss_weight', 'match_type', 'mining_type', 'normalize', 'sample_size'], varargs=None, keywords=None, defaults=(None, 0, 0.5, 3.0, 0.5, 1.0, 1.0, 'per_prediction', 'max_negative', True, None)), ('document', '6d5028fd09d01ab82d296adc0ea95aee'))
paddle.fluid.layers.ssd_loss (ArgSpec(args=['location', 'confidence', 'gt_box', 'gt_label', 'prior_box', 'prior_box_var', 'background_label', 'overlap_threshold', 'neg_pos_ratio', 'neg_overlap', 'loc_loss_weight', 'conf_loss_weight', 'match_type', 'mining_type', 'normalize', 'sample_size'], varargs=None, keywords=None, defaults=(None, 0, 0.5, 3.0, 0.5, 1.0, 1.0, 'per_prediction', 'max_negative', True, None)), ('document', '6d5028fd09d01ab82d296adc0ea95aee'))
paddle.fluid.layers.detection_map (ArgSpec(args=['detect_res', 'label', 'class_num', 'background_label', 'overlap_threshold', 'evaluate_difficult', 'has_state', 'input_states', 'out_states', 'ap_version'], varargs=None, keywords=None, defaults=(0, 0.3, True, None, None, None, 'integral')), ('document', '1467d91b50c22cd52103b4aa1ee9d0a1'))
paddle.fluid.layers.detection_map (ArgSpec(args=['detect_res', 'label', 'class_num', 'background_label', 'overlap_threshold', 'evaluate_difficult', 'has_state', 'input_states', 'out_states', 'ap_version'], varargs=None, keywords=None, defaults=(0, 0.3, True, None, None, None, 'integral')), ('document', '1467d91b50c22cd52103b4aa1ee9d0a1'))
paddle.fluid.layers.rpn_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'is_crowd', 'im_info', 'rpn_batch_size_per_im', 'rpn_straddle_thresh', 'rpn_fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.0, 0.5, 0.7, 0.3, True)), ('document', '1dddef3eb4b3cbd4df8e03ac480dbf97'))
paddle.fluid.layers.rpn_target_assign (ArgSpec(args=['bbox_pred', 'cls_logits', 'anchor_box', 'anchor_var', 'gt_boxes', 'is_crowd', 'im_info', 'rpn_batch_size_per_im', 'rpn_straddle_thresh', 'rpn_fg_fraction', 'rpn_positive_overlap', 'rpn_negative_overlap', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.0, 0.5, 0.7, 0.3, True)), ('document', '1dddef3eb4b3cbd4df8e03ac480dbf97'))
paddle.fluid.layers.anchor_generator (ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None)), ('document', '
23337cc57bbf5be73884b6bd0f849603
'))
paddle.fluid.layers.anchor_generator (ArgSpec(args=['input', 'anchor_sizes', 'aspect_ratios', 'variance', 'stride', 'offset', 'name'], varargs=None, keywords=None, defaults=(None, None, [0.1, 0.1, 0.2, 0.2], None, 0.5, None)), ('document', '
82b2aefeeb1b706bc4afec70928a259a
'))
paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,)), ('document', '5761f9ed83654314416e24372b33bb84'))
paddle.fluid.layers.roi_perspective_transform (ArgSpec(args=['input', 'rois', 'transformed_height', 'transformed_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1.0,)), ('document', '5761f9ed83654314416e24372b33bb84'))
paddle.fluid.layers.generate_proposal_labels (ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True)), ('document', '87863717edeb7fe87a1268976cbc015d'))
paddle.fluid.layers.generate_proposal_labels (ArgSpec(args=['rpn_rois', 'gt_classes', 'is_crowd', 'gt_boxes', 'im_info', 'batch_size_per_im', 'fg_fraction', 'fg_thresh', 'bg_thresh_hi', 'bg_thresh_lo', 'bbox_reg_weights', 'class_nums', 'use_random'], varargs=None, keywords=None, defaults=(256, 0.25, 0.25, 0.5, 0.0, [0.1, 0.1, 0.2, 0.2], None, True)), ('document', '87863717edeb7fe87a1268976cbc015d'))
paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)), ('document', '57ab49f3f324f310b7eed322e7c1057a'))
paddle.fluid.layers.generate_proposals (ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)), ('document', '57ab49f3f324f310b7eed322e7c1057a'))
...
@@ -350,10 +350,10 @@ paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'targ
...
@@ -350,10 +350,10 @@ paddle.fluid.layers.box_coder (ArgSpec(args=['prior_box', 'prior_box_var', 'targ
paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0e5ac2507723a0b5adec473f9556799b'))
paddle.fluid.layers.polygon_box_transform (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '0e5ac2507723a0b5adec473f9556799b'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', 'eb62b1ff7cc981f3483a62321a491f2e'))
paddle.fluid.layers.yolov3_loss (ArgSpec(args=['x', 'gt_box', 'gt_label', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'gt_score', 'use_label_smooth', 'name'], varargs=None, keywords=None, defaults=(None, True, None)), ('document', 'eb62b1ff7cc981f3483a62321a491f2e'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5566169a5ab993d177792c023c7fb340'))
paddle.fluid.layers.yolo_box (ArgSpec(args=['x', 'img_size', 'anchors', 'class_num', 'conf_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5566169a5ab993d177792c023c7fb340'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
397e9e02b451d99c56e20f268fa03f2e
'))
paddle.fluid.layers.box_clip (ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
04384378ff00a42ade8fabd52e27cbc5
'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0'))
paddle.fluid.layers.multiclass_nms (ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None)), ('document', 'ca7d1107b6c5d2d6d8221039a220fde0'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7bb011ec26bace2bc23235aa4a17647d'))
paddle.fluid.layers.distribute_fpn_proposals (ArgSpec(args=['fpn_rois', 'min_level', 'max_level', 'refer_level', 'refer_scale', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7bb011ec26bace2bc23235aa4a17647d'))
paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'box_score', 'box_clip', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
005a5ae47d6c8fff721931d69d072b9f
'))
paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'box_score', 'box_clip', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
dfc953994fd8fef35c49dd9c6eea37a5
'))
paddle.fluid.layers.accuracy (ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)), ('document', '9808534c12c5e739a10f73ebb0b4eafd'))
paddle.fluid.layers.accuracy (ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)), ('document', '9808534c12c5e739a10f73ebb0b4eafd'))
paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)), ('document', 'e0e95334fce92d16c2d9db6e7caffc47'))
paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)), ('document', 'e0e95334fce92d16c2d9db6e7caffc47'))
paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '98a5050bee8522fcea81aa795adaba51'))
paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '98a5050bee8522fcea81aa795adaba51'))
...
...
paddle/fluid/operators/maxout_op.cc
浏览文件 @
ef66baed
...
@@ -36,10 +36,10 @@ class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -36,10 +36,10 @@ class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker {
"width of feature."
);
"width of feature."
);
AddAttr
<
int
>
(
AddAttr
<
int
>
(
"groups"
,
"groups"
,
R"DOC("Specifies how many groups the input tensor will be split"
"(int),"
"Specifies how many groups the input tensor will be split"
"in the channel dimension. And the number of output channel is "
"in the channel dimension. And the number of output channel is "
"the number of channels divided by groups.."
"the number of channels divided by groups."
);
)DOC"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
MaxOut Operator.
MaxOut Operator.
...
@@ -47,14 +47,12 @@ Assumed the input shape is (N, Ci, H, W).
...
@@ -47,14 +47,12 @@ Assumed the input shape is (N, Ci, H, W).
The output shape is (N, Co, H, W).
The output shape is (N, Co, H, W).
Then $Co = Ci / groups$ and the operator formula is as follows:
Then $Co = Ci / groups$ and the operator formula is as follows:
$$
$$ y_{si+j} = \max_{k} x_{gsi + sk + j} $$
y_{si+j} = \max_k x_{gsi + sk + j} \\
$$ g = groups $$
g = groups \\
$$ s = \\frac{input.size}{num\\_channels} $$
s = \frac{input.size}{num\_channels} \\
$$ 0 \\le i < \\frac{num\\_channels}{groups} $$
0 \le i < \frac{num\_channels}{groups} \\
$$ 0 \\le j < s $$
0 \le j < s \\
$$ 0 \\le k < groups $$
0 \le k < groups
$$
Please refer to Paper:
Please refer to Paper:
- Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
- Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
ef66baed
...
@@ -1751,7 +1751,8 @@ def anchor_generator(input,
...
@@ -1751,7 +1751,8 @@ def anchor_generator(input,
.. code-block:: python
.. code-block:: python
anchor, var = anchor_generator(
conv1 = fluid.layers.data(name='conv1', shape=[48, 16, 16], dtype='float32')
anchor, var = fluid.layers.anchor_generator(
input=conv1,
input=conv1,
anchor_sizes=[64, 128, 256, 512],
anchor_sizes=[64, 128, 256, 512],
aspect_ratios=[0.5, 1.0, 2.0],
aspect_ratios=[0.5, 1.0, 2.0],
...
@@ -2202,10 +2203,10 @@ def box_clip(input, im_info, name=None):
...
@@ -2202,10 +2203,10 @@ def box_clip(input, im_info, name=None):
.. code-block:: python
.. code-block:: python
boxes = fluid.layers.data(
boxes = fluid.layers.data(
name='
data
', shape=[8, 4], dtype='float32', lod_level=1)
name='
boxes
', shape=[8, 4], dtype='float32', lod_level=1)
im_info = fluid.layers.data(name='im_info', shape=[3])
im_info = fluid.layers.data(name='im_info', shape=[3])
out = fluid.layers.box_clip(
out = fluid.layers.box_clip(
input=boxes, im_info=im_info
, inplace=True
)
input=boxes, im_info=im_info)
"""
"""
helper
=
LayerHelper
(
"box_clip"
,
**
locals
())
helper
=
LayerHelper
(
"box_clip"
,
**
locals
())
...
@@ -2435,13 +2436,14 @@ def box_decoder_and_assign(prior_box,
...
@@ -2435,13 +2436,14 @@ def box_decoder_and_assign(prior_box,
.. code-block:: python
.. code-block:: python
pb = fluid.layers.data(
pb = fluid.layers.data(
name='prior_box', shape=[
20,
4], dtype='float32')
name='prior_box', shape=[4], dtype='float32')
pbv = fluid.layers.data(
pbv = fluid.layers.data(
name='prior_box_var', shape=[1, 4], dtype='float32')
name='prior_box_var', shape=[4],
dtype='float32', append_batch_size=False)
loc = fluid.layers.data(
loc = fluid.layers.data(
name='target_box', shape=[
20,
4*81], dtype='float32')
name='target_box', shape=[4*81], dtype='float32')
scores = fluid.layers.data(
scores = fluid.layers.data(
name='scores', shape=[
20,
81], dtype='float32')
name='scores', shape=[81], dtype='float32')
decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
pb, pbv, loc, scores, 4.135)
pb, pbv, loc, scores, 4.135)
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
ef66baed
...
@@ -7095,6 +7095,10 @@ def roi_align(input,
...
@@ -7095,6 +7095,10 @@ def roi_align(input,
Examples:
Examples:
.. code-block:: python
.. code-block:: python
x = fluid.layers.data(
name='data', shape=[256, 32, 32], dtype='float32')
rois = fluid.layers.data(
name='rois', shape=[4], dtype='float32')
align_out = fluid.layers.roi_align(input=x,
align_out = fluid.layers.roi_align(input=x,
rois=rois,
rois=rois,
pooled_height=7,
pooled_height=7,
...
@@ -9880,6 +9884,15 @@ def maxout(x, groups, name=None):
...
@@ -9880,6 +9884,15 @@ def maxout(x, groups, name=None):
Returns:
Returns:
out(${out_type}): ${out_comment}
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
input = fluid.layers.data(
name='data',
shape=[256, 32, 32],
dtype='float32')
out = fluid.layers.maxout(input, groups=2)
"""
"""
helper
=
LayerHelper
(
"maxout"
,
**
locals
())
helper
=
LayerHelper
(
"maxout"
,
**
locals
())
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录