提交 ef413205 编写于 作者: Z zchen0211

gan design with graph

上级 147c3f52
...@@ -27,10 +27,15 @@ In our GAN design, we wrap it as a user-friendly easily customized python API to ...@@ -27,10 +27,15 @@ In our GAN design, we wrap it as a user-friendly easily customized python API to
| Concat op (done) | ? | N (Cond) | | Concat op (done) | ? | N (Cond) |
| Repmat op (done) | ? | N (Cond) | | Repmat op (done) | ? | N (Cond) |
<p align="center">
<img src="./test.dot.png" width = "90%" align="center"/><br/>
The overall running logic of GAN. The black solid arrows indicate the forward pass; the green dashed arrows indicate the backward pass of generator training; the red dashed arrows indicate the backward pass of the discriminator training. The BP pass of the green (red) arrow should only update the parameters in the green (red) boxes.
</p>
<p align="center"> <p align="center">
<img src="./dcgan.png" width = "90%" align="center"/><br/> <img src="./dcgan.png" width = "90%" align="center"/><br/>
Borrow this photo from the original DC-GAN paper. Photo borrowed from the original DC-GAN paper.
</p> </p>
## The Conditional-GAN might be a class. ## The Conditional-GAN might be a class.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册