Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ef35c4ed
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
ef35c4ed
编写于
2月 27, 2018
作者:
G
gongweibao
提交者:
GitHub
2月 27, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Tensorflow benchmark (#8522)
Tensorflow benchmark
上级
1ac31d3d
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
609 addition
and
21 deletion
+609
-21
benchmark/cluster/vgg16/Dockerfile
benchmark/cluster/vgg16/Dockerfile
+26
-9
benchmark/cluster/vgg16/fluid_trainer.yaml
benchmark/cluster/vgg16/fluid_trainer.yaml
+1
-1
benchmark/cluster/vgg16/tf_k8s
benchmark/cluster/vgg16/tf_k8s
+82
-0
benchmark/cluster/vgg16/tf_pserver.yaml
benchmark/cluster/vgg16/tf_pserver.yaml
+56
-0
benchmark/cluster/vgg16/tf_trainer.yaml
benchmark/cluster/vgg16/tf_trainer.yaml
+58
-0
benchmark/cluster/vgg16/vgg16_fluid.py
benchmark/cluster/vgg16/vgg16_fluid.py
+24
-11
benchmark/cluster/vgg16/vgg16_tf.py
benchmark/cluster/vgg16/vgg16_tf.py
+362
-0
未找到文件。
benchmark/cluster/vgg16/Dockerfile
浏览文件 @
ef35c4ed
#FROM python:2.7.14
FROM
nvidia/cuda:8.0-cudnn5-runtime-ubuntu16.04
RUN
apt-get update
&&
apt-get
install
-y
python
RUN
pip
install
-U
kubernetes opencv-python
&&
apt-get update
-y
&&
apt-get
install
-y
iputils-ping libgtk2.0-dev
# NOTE: By default CI built wheel packages turn WITH_DISTRIBUTE=OFF,
# so we must build one with distribute support to install in this image.
# you can get mirror list here:
# https://launchpad.net/ubuntu/+archivemirrors
ARG
UBUNTU_MIRROR
RUN
/bin/bash
-c
'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i '
s#http://archive.ubuntu.com/ubuntu#
${
UBUNTU_MIRROR
}
#g' /etc/apt/sources.list; fi'
RUN
apt-get update
&&
apt-get
install
-y
python python-dev python-pip iputils-ping libgtk2.0-dev
RUN
pip
install
-U
kubernetes opencv-python
RUN
pip
install
paddlepaddle
# if network is slowly, you may need to add proxy here.
# ENV https_proxy=
RUN
sh
-c
'echo "import paddle.v2 as paddle\npaddle.dataset.cifar.train10()" | python'
RUN
pip uninstall
-y
paddlepaddle
# unset proxy if it is setted.
# ENV https_proxy=""
# NOTE: By default CI built wheel packages turn WITH_DISTRIBUTE=OFF,
# so we must build one with distribute support to install in this image.
ADD
*.whl /
RUN
pip
install
/
*
.whl
&&
rm
-f
/
*
.whl
ENV
LD_LIBRARY_PATH=/usr/local/lib
# tf k8s
RUN
pip
install
tensorflow
==
1.4.0
ADD
tf_k8s /usr/bin
RUN
chmod
+x /usr/bin/tf_k8s
ADD
vgg16_tf.py /workspace/
# below lines may change a lot for debugging
ADD
https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/paddle_k8s /usr/bin
ADD
https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/k8s_tools.py /root
ADD
*.whl /
RUN
pip
install
/
*
.whl
&&
rm
-f
/
*
.whl
&&
\
chmod
+x /usr/bin/paddle_k8s
ENV
LD_LIBRARY_PATH=/usr/local/lib
RUN
chmod
+x /usr/bin/paddle_k8s
ADD
vgg16_fluid.py vgg16_v2.py /workspace/
benchmark/cluster/vgg16/fluid_trainer.yaml
浏览文件 @
ef35c4ed
...
...
@@ -11,7 +11,7 @@ spec:
paddle-job
:
vgg16job
spec
:
imagePullSecrets
:
-
name
:
job-registry-secret
-
name
:
job-registry-secret
hostNetwork
:
true
containers
:
-
name
:
trainer
...
...
benchmark/cluster/vgg16/tf_k8s
0 → 100644
浏览文件 @
ef35c4ed
#!/bin/bash
check_trainer_ret
()
{
ret
=
$1
stdbuf
-oL
echo
"job returned
$ret
...setting pod return message..."
stdbuf
-oL
echo
"==============================="
if
[
$ret
-eq
136
]
;
then
echo
"Error Arithmetic Operation(Floating Point Exception)"
>
/dev/termination-log
elif
[
$ret
-eq
139
]
;
then
echo
"Segmentation Fault"
>
/dev/termination-log
elif
[
$ret
-eq
1
]
;
then
echo
"General Error"
>
/dev/termination-log
elif
[
$ret
-eq
134
]
;
then
echo
"Program Abort"
>
/dev/termination-log
fi
stdbuf
-oL
echo
"termination log wroted..."
exit
$ret
}
g_pservers
=
""
g_trainers
=
""
wait_running_pods
(){
pserver_label
=
"tf-job-pserver=
${
JOB_NAME
}
"
trainer_label
=
"tf-job-trainer=
${
JOB_NAME
}
"
stdbuf
-oL
python /root/k8s_tools.py wait_pods_running
${
pserver_label
}
${
PSERVERS_NUM
}
stdbuf
-oL
python /root/k8s_tools.py wait_pods_running
${
trainer_label
}
${
TRAINERS_NUM
}
g_pservers
=
$(
python /root/k8s_tools.py fetch_endpoints
${
pserver_label
}
${
PORT
}
)
g_trainers
=
$(
python /root/k8s_tools.py fetch_endpoints
${
trainer_label
}
${
PORT
}
)
}
start_tf_pserver
(){
wait_running_pods
label
=
"tf-job-pserver=
${
JOB_NAME
}
"
pserver_id
=
$(
python /root/k8s_tools.py fetch_id
${
label
}
)
cmd
=
"
${
ENTRY
}
--ps_hosts=
${
g_pservers
}
--worker_hosts=
${
g_trainers
}
\
--job_name=
${
TF_JOB_NAME
}
--task_index=
${
pserver_id
}
"
stdbuf
-oL
sh
-c
"cd
${
TRAINER_PACKAGE
}
&&
${
cmd
}
"
}
start_tf_trainer
(){
wait_running_pods
label
=
"tf-job-trainer=
${
JOB_NAME
}
"
trainer_id
=
$(
python /root/k8s_tools.py fetch_id
${
label
}
)
cmd
=
"
${
ENTRY
}
--ps_hosts=
${
g_pservers
}
--worker_hosts=
${
g_trainers
}
\
--job_name=
${
TF_JOB_NAME
}
--task_index=
${
trainer_id
}
--batch_size=
${
BATCH_SIZE
}
"
stdbuf
-oL
sh
-c
"cd
${
TRAINER_PACKAGE
}
&&
${
cmd
}
"
check_trainer_ret
$?
}
start_tf
(){
if
[[
"
${
TF_JOB_NAME
}
"
==
"worker"
]]
;
then
start_tf_trainer
else
start_tf_pserver
fi
}
usage
()
{
echo
"usage: tf_k8s [<args>]:"
echo
" start_tf Start tensorflow jobs"
}
case
"
$1
"
in
start_tf
)
start_tf
;;
--help
)
usage
;;
*
)
usage
;;
esac
benchmark/cluster/vgg16/tf_pserver.yaml
0 → 100644
浏览文件 @
ef35c4ed
apiVersion
:
extensions/v1beta1
kind
:
ReplicaSet
metadata
:
name
:
vgg16job-tf-pserver
spec
:
replicas
:
10
template
:
metadata
:
labels
:
tf-job-pserver
:
vgg16job-tf
spec
:
hostNetwork
:
true
imagePullSecrets
:
-
name
:
job-registry-secret
containers
:
-
name
:
pserver
image
:
"
registry.baidu.com/paddlepaddle/fluid_benchmark_tf:vgg16"
imagePullPolicy
:
Always
command
:
[
"
tf_k8s"
,
"
start_tf"
]
ports
:
-
name
:
jobport-30236
containerPort
:
30236
env
:
-
name
:
PORT
value
:
"
32036"
-
name
:
ENTRY
value
:
"
python
vgg16_tf.py"
-
name
:
JOB_NAME
value
:
vgg16job-tf
-
name
:
PSERVERS_NUM
value
:
"
10"
-
name
:
TF_JOB_NAME
value
:
"
ps"
-
name
:
TRAINERS_NUM
value
:
"
20"
-
name
:
BATCH_SIZE
value
:
"
128"
-
name
:
TRAINER_PACKAGE
value
:
"
/workspace"
-
name
:
NUM_PASSES
value
:
"
1"
-
name
:
NAMESPACE
valueFrom
:
fieldRef
:
fieldPath
:
"
metadata.namespace"
-
name
:
POD_IP
valueFrom
:
fieldRef
:
fieldPath
:
"
status.podIP"
resources
:
requests
:
memory
:
10Gi
cpu
:
4
limits
:
memory
:
10Gi
cpu
:
4
benchmark/cluster/vgg16/tf_trainer.yaml
0 → 100644
浏览文件 @
ef35c4ed
apiVersion
:
batch/v1
kind
:
Job
metadata
:
name
:
vgg16job-tf-trainer
spec
:
parallelism
:
20
completions
:
20
template
:
metadata
:
labels
:
tf-job-trainer
:
vgg16job-tf
spec
:
imagePullSecrets
:
-
name
:
job-registry-secret
hostNetwork
:
true
containers
:
-
name
:
trainer
image
:
"
registry.baidu.com/paddlepaddle/fluid_benchmark_tf:vgg16"
imagePullPolicy
:
Always
command
:
[
"
tf_k8s"
,
"
start_tf"
]
ports
:
-
name
:
jobport-30236
containerPort
:
30236
env
:
-
name
:
PORT
value
:
"
32036"
-
name
:
JOB_NAME
value
:
vgg16job-tf
-
name
:
TF_JOB_NAME
value
:
"
worker"
-
name
:
ENTRY
value
:
"
python
vgg16_tf.py"
-
name
:
PSERVERS_NUM
value
:
"
10"
-
name
:
BATCH_SIZE
value
:
"
128"
-
name
:
TRAINERS_NUM
value
:
"
20"
-
name
:
TRAINER_PACKAGE
value
:
"
/workspace"
-
name
:
NUM_PASSES
value
:
"
1"
-
name
:
NAMESPACE
valueFrom
:
fieldRef
:
fieldPath
:
"
metadata.namespace"
-
name
:
POD_IP
valueFrom
:
fieldRef
:
fieldPath
:
"
status.podIP"
resources
:
requests
:
memory
:
40Gi
cpu
:
2
limits
:
memory
:
40Gi
cpu
:
2
restartPolicy
:
Never
benchmark/cluster/vgg16/vgg16_fluid.py
浏览文件 @
ef35c4ed
...
...
@@ -68,6 +68,21 @@ parser.add_argument(
type
=
str2bool
,
default
=
True
,
help
=
'Whether to run as local mode.'
)
parser
.
add_argument
(
"--ps_hosts"
,
type
=
str
,
default
=
""
,
help
=
"Comma-separated list of hostname:port pairs"
)
parser
.
add_argument
(
"--trainer_hosts"
,
type
=
str
,
default
=
""
,
help
=
"Comma-separated list of hostname:port pairs"
)
# Flags for defining the tf.train.Server
parser
.
add_argument
(
"--task_index"
,
type
=
int
,
default
=
0
,
help
=
"Index of task within the job"
)
args
=
parser
.
parse_args
()
...
...
@@ -180,8 +195,9 @@ def main():
iters
+=
1
num_samples
+=
len
(
data
)
print
(
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, spent %f"
%
(
pass_id
,
iters
,
loss
,
acc
,
time
.
time
()
-
ts
)
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s"
%
(
pass_id
,
iters
,
loss
,
acc
,
len
(
data
)
/
(
time
.
time
()
-
ts
))
)
# The accuracy is the accumulation of batches, but not the current batch.
pass_elapsed
=
time
.
time
()
-
start_time
...
...
@@ -209,27 +225,24 @@ def main():
batch_size
=
args
.
batch_size
)
train_loop
(
exe
,
fluid
.
default_main_program
())
else
:
pserver_ips
=
os
.
getenv
(
"PADDLE_INIT_PSERVERS"
)
# all pserver endpoints
eplist
=
[]
for
ip
in
pserver_ips
.
split
(
","
):
eplist
.
append
(
':'
.
join
([
ip
,
"6174"
]))
pserver_endpoints
=
","
.
join
(
eplist
)
print
(
"pserver endpoints: "
,
pserver_endpoints
)
trainers
=
int
(
os
.
getenv
(
"TRAINERS"
))
# total trainer count
print
(
"trainers total: "
,
trainers
)
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":6174"
# current pserver endpoint
training_role
=
os
.
getenv
(
"TRAINING_ROLE"
,
"TRAINER"
)
# get the training role: trainer/pserver
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
optimize_ops
,
params_grads
,
pservers
=
pserver_endpoints
,
trainer_id
=
args
.
task_index
,
pservers
=
args
.
ps_hosts
,
trainers
=
trainers
)
if
training_role
==
"PSERVER"
:
current_endpoint
=
os
.
getenv
(
"POD_IP"
)
+
":"
+
os
.
getenv
(
"PADDLE_INIT_PORT"
)
if
not
current_endpoint
:
print
(
"need env SERVER_ENDPOINT"
)
exit
(
1
)
...
...
benchmark/cluster/vgg16/vgg16_tf.py
0 → 100644
浏览文件 @
ef35c4ed
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VGG16 benchmark in TensorFlow
You can get distribution example template structure here:
https://medium.com/clusterone/how-to-write-distributed-tensorflow-code-with-an-example-on-tensorport-70bf3306adcb
https://www.tensorflow.org/deploy/distributed
"""
import
tensorflow
as
tf
import
paddle.v2
as
paddle
import
numpy
as
np
import
argparse
import
time
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
128
,
help
=
"Batch size for training."
)
parser
.
add_argument
(
'--learning_rate'
,
type
=
float
,
default
=
1e-3
,
help
=
"Learning rate for training."
)
parser
.
add_argument
(
'--num_passes'
,
type
=
int
,
default
=
50
,
help
=
"No. of passes."
)
parser
.
add_argument
(
'--device'
,
type
=
str
,
default
=
'CPU'
,
choices
=
[
'CPU'
,
'GPU'
],
help
=
"The device type."
)
parser
.
add_argument
(
'--data_format'
,
type
=
str
,
default
=
'NHWC'
,
choices
=
[
'NCHW'
,
'NHWC'
],
help
=
'The data order, NCHW=[batch, channels, height, width].'
'Only support NHWC right now.'
)
parser
.
add_argument
(
'--data_set'
,
type
=
str
,
default
=
'cifar10'
,
choices
=
[
'cifar10'
,
'flowers'
],
help
=
'Optional dataset for benchmark.'
)
parser
.
add_argument
(
"--ps_hosts"
,
type
=
str
,
default
=
""
,
help
=
"Comma-separated list of hostname:port pairs"
)
parser
.
add_argument
(
"--worker_hosts"
,
type
=
str
,
default
=
""
,
help
=
"Comma-separated list of hostname:port pairs"
)
parser
.
add_argument
(
"--job_name"
,
type
=
str
,
default
=
""
,
help
=
"One of 'worker', 'ps'"
)
# Flags for defining the tf.train.Server
parser
.
add_argument
(
"--task_index"
,
type
=
int
,
default
=
0
,
help
=
"Index of task within the job"
)
args
=
parser
.
parse_args
()
class
VGG16Model
(
object
):
def
__init__
(
self
):
self
.
parameters
=
[]
def
batch_norm_relu
(
self
,
inputs
,
is_training
):
"""Performs a batch normalization followed by a ReLU."""
# We set fused=True for a significant speed boost. See
# https://www.tensorflow.org/speed/speed_guide#common_fused_ops
inputs
=
tf
.
layers
.
batch_normalization
(
inputs
=
inputs
,
axis
=
1
if
args
.
data_format
==
'NCHW'
else
-
1
,
momentum
=
0.9
,
epsilon
=
1e-05
,
center
=
True
,
scale
=
True
,
training
=
is_training
,
fused
=
True
)
inputs
=
tf
.
nn
.
relu
(
inputs
)
return
inputs
def
conv_bn_layer
(
self
,
name
,
images
,
kernel_shape
,
is_training
,
drop_rate
=
0.0
):
with
tf
.
name_scope
(
name
)
as
scope
:
kernel
=
tf
.
Variable
(
tf
.
truncated_normal
(
kernel_shape
,
dtype
=
tf
.
float32
,
stddev
=
1e-1
),
name
=
'weights'
)
conv
=
tf
.
nn
.
conv2d
(
images
,
kernel
,
[
1
,
1
,
1
,
1
],
data_format
=
args
.
data_format
,
padding
=
'SAME'
)
biases
=
tf
.
Variable
(
tf
.
constant
(
0.0
,
shape
=
[
kernel_shape
[
-
1
]],
dtype
=
tf
.
float32
),
trainable
=
True
,
name
=
'biases'
)
out
=
tf
.
nn
.
bias_add
(
conv
,
biases
)
out
=
self
.
batch_norm_relu
(
out
,
is_training
)
out
=
tf
.
layers
.
dropout
(
out
,
rate
=
drop_rate
,
training
=
is_training
)
return
out
def
fc_layer
(
self
,
name
,
inputs
,
shape
):
with
tf
.
name_scope
(
name
)
as
scope
:
fc_w
=
tf
.
Variable
(
tf
.
truncated_normal
(
shape
,
dtype
=
tf
.
float32
,
stddev
=
1e-1
),
name
=
'weights'
)
fc_b
=
tf
.
Variable
(
tf
.
constant
(
0.0
,
shape
=
[
shape
[
-
1
]],
dtype
=
tf
.
float32
),
trainable
=
True
,
name
=
'biases'
)
out
=
tf
.
nn
.
bias_add
(
tf
.
matmul
(
inputs
,
fc_w
),
fc_b
)
return
out
def
network
(
self
,
images
,
class_dim
,
is_training
):
""" VGG16 model structure.
TODO(kuke): enable this network to support the 'NCHW' data format
"""
# conv1
conv1_1
=
self
.
conv_bn_layer
(
'conv1_1'
,
images
,
[
3
,
3
,
3
,
64
],
is_training
,
drop_rate
=
0.3
)
conv1_2
=
self
.
conv_bn_layer
(
'conv1_2'
,
conv1_1
,
[
3
,
3
,
64
,
64
],
is_training
,
drop_rate
=
0.0
)
# pool1
pool1
=
tf
.
nn
.
max_pool
(
conv1_2
,
ksize
=
[
1
,
2
,
2
,
1
],
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'SAME'
,
name
=
'pool1'
)
# conv2
conv2_1
=
self
.
conv_bn_layer
(
'conv2_1'
,
pool1
,
[
3
,
3
,
64
,
128
],
is_training
,
drop_rate
=
0.4
)
conv2_2
=
self
.
conv_bn_layer
(
'conv2_2'
,
conv2_1
,
[
3
,
3
,
128
,
128
],
is_training
,
drop_rate
=
0.0
)
# pool2
pool2
=
tf
.
nn
.
max_pool
(
conv2_2
,
ksize
=
[
1
,
2
,
2
,
1
],
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'SAME'
,
name
=
'pool2'
)
# conv3
conv3_1
=
self
.
conv_bn_layer
(
'conv3_1'
,
pool2
,
[
3
,
3
,
128
,
256
],
is_training
,
drop_rate
=
0.4
)
conv3_2
=
self
.
conv_bn_layer
(
'conv3_2'
,
conv3_1
,
[
3
,
3
,
256
,
256
],
is_training
,
drop_rate
=
0.4
)
conv3_3
=
self
.
conv_bn_layer
(
'conv3_3'
,
conv3_2
,
[
3
,
3
,
256
,
256
],
is_training
,
drop_rate
=
0.0
)
# pool3
pool3
=
tf
.
nn
.
max_pool
(
conv3_3
,
ksize
=
[
1
,
2
,
2
,
1
],
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'SAME'
,
name
=
'pool3'
)
# conv4
conv4_1
=
self
.
conv_bn_layer
(
'conv4_1'
,
pool3
,
[
3
,
3
,
256
,
512
],
is_training
,
drop_rate
=
0.4
)
conv4_2
=
self
.
conv_bn_layer
(
'conv4_2'
,
conv4_1
,
[
3
,
3
,
512
,
512
],
is_training
,
drop_rate
=
0.4
)
conv4_3
=
self
.
conv_bn_layer
(
'conv4_3'
,
conv4_2
,
[
3
,
3
,
512
,
512
],
is_training
,
drop_rate
=
0.0
)
# pool4
pool4
=
tf
.
nn
.
max_pool
(
conv4_3
,
ksize
=
[
1
,
2
,
2
,
1
],
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'SAME'
,
name
=
'pool4'
)
# conv5
conv5_1
=
self
.
conv_bn_layer
(
'conv5_1'
,
pool4
,
[
3
,
3
,
512
,
512
],
is_training
,
drop_rate
=
0.4
)
conv5_2
=
self
.
conv_bn_layer
(
'conv5_2'
,
conv5_1
,
[
3
,
3
,
512
,
512
],
is_training
,
drop_rate
=
0.4
)
conv5_3
=
self
.
conv_bn_layer
(
'conv5_3'
,
conv5_2
,
[
3
,
3
,
512
,
512
],
is_training
,
drop_rate
=
0.0
)
# pool5
pool5
=
tf
.
nn
.
max_pool
(
conv5_3
,
ksize
=
[
1
,
2
,
2
,
1
],
strides
=
[
1
,
2
,
2
,
1
],
padding
=
'SAME'
,
name
=
'pool4'
)
# flatten
shape
=
int
(
np
.
prod
(
pool5
.
get_shape
()[
1
:]))
pool5_flat
=
tf
.
reshape
(
pool5
,
[
-
1
,
shape
])
# fc1
drop
=
tf
.
layers
.
dropout
(
pool5_flat
,
rate
=
0.5
,
training
=
is_training
)
fc1
=
self
.
fc_layer
(
'fc1'
,
drop
,
[
shape
,
512
])
# fc2
bn
=
self
.
batch_norm_relu
(
fc1
,
is_training
)
drop
=
tf
.
layers
.
dropout
(
bn
,
rate
=
0.5
,
training
=
is_training
)
fc2
=
self
.
fc_layer
(
'fc2'
,
drop
,
[
512
,
512
])
fc3
=
self
.
fc_layer
(
'fc3'
,
fc2
,
[
512
,
class_dim
])
return
fc3
def
run_benchmark
(
cluster_spec
,
server
):
"""Run benchmark on cifar10 or flowers."""
if
args
.
data_set
==
"cifar10"
:
class_dim
=
10
raw_shape
=
(
3
,
32
,
32
)
dat_shape
=
(
None
,
32
,
32
,
3
)
if
args
.
data_format
==
'NHWC'
else
(
None
,
3
,
32
,
32
)
else
:
class_dim
=
102
raw_shape
=
(
3
,
224
,
224
)
dat_shape
=
(
None
,
224
,
224
,
3
)
if
args
.
data_format
==
'NHWC'
else
(
None
,
3
,
224
,
224
)
device
=
tf
.
train
.
replica_device_setter
(
worker_device
=
"/job:worker/task:{}"
.
format
(
args
.
task_index
),
cluster
=
cluster_spec
)
with
tf
.
device
(
device
):
images
=
tf
.
placeholder
(
tf
.
float32
,
shape
=
dat_shape
)
labels
=
tf
.
placeholder
(
tf
.
int64
,
shape
=
(
None
,
))
is_training
=
tf
.
placeholder
(
'bool'
)
onehot_labels
=
tf
.
one_hot
(
labels
,
depth
=
class_dim
)
vgg16
=
VGG16Model
()
logits
=
vgg16
.
network
(
images
,
class_dim
,
is_training
)
loss
=
tf
.
losses
.
softmax_cross_entropy
(
onehot_labels
=
onehot_labels
,
logits
=
logits
)
avg_loss
=
tf
.
reduce_mean
(
loss
)
correct
=
tf
.
equal
(
tf
.
argmax
(
logits
,
1
),
labels
)
accuracy
=
tf
.
reduce_mean
(
tf
.
cast
(
correct
,
tf
.
float32
))
optimizer
=
tf
.
train
.
AdamOptimizer
(
learning_rate
=
args
.
learning_rate
)
update_ops
=
tf
.
get_collection
(
tf
.
GraphKeys
.
UPDATE_OPS
)
global_step
=
tf
.
Variable
(
0
,
name
=
'global_step'
,
trainable
=
False
)
with
tf
.
control_dependencies
(
update_ops
):
train_op
=
optimizer
.
minimize
(
avg_loss
,
global_step
=
global_step
)
summary_op
=
tf
.
summary
.
merge_all
()
init_op
=
tf
.
global_variables_initializer
()
# data reader
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
train10
()
if
args
.
data_set
==
'cifar10'
else
paddle
.
dataset
.
flowers
.
train
(),
buf_size
=
5120
),
batch_size
=
args
.
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
cifar
.
test10
()
if
args
.
data_set
==
'cifar10'
else
paddle
.
dataset
.
flowers
.
test
(),
buf_size
=
5120
),
batch_size
=
args
.
batch_size
)
# test
def
test
():
test_accs
=
[]
for
batch_id
,
data
in
enumerate
(
test_reader
()):
test_images
=
np
.
array
(
map
(
lambda
x
:
np
.
transpose
(
x
[
0
].
reshape
(
raw_shape
),
axes
=
[
1
,
2
,
0
])
if
args
.
data_format
==
'NHWC'
else
x
[
0
],
data
)).
astype
(
"float32"
)
test_labels
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
'int64'
)
test_accs
.
append
(
accuracy
.
eval
(
feed_dict
=
{
images
:
test_images
,
labels
:
test_labels
,
is_training
:
False
}))
return
np
.
mean
(
test_accs
)
config
=
tf
.
ConfigProto
(
intra_op_parallelism_threads
=
1
,
inter_op_parallelism_threads
=
1
)
config
.
gpu_options
.
allow_growth
=
True
hooks
=
[
tf
.
train
.
StopAtStepHook
(
last_step
=
1000000
)]
with
tf
.
train
.
MonitoredTrainingSession
(
master
=
server
.
target
,
is_chief
=
(
args
.
task_index
==
0
),
hooks
=
hooks
)
as
sess
:
iters
,
num_samples
,
start_time
=
0
,
0
,
0.0
for
pass_id
in
range
(
args
.
num_passes
):
# train
num_samples
=
0
start_time
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
train_images
=
np
.
array
(
map
(
lambda
x
:
np
.
transpose
(
x
[
0
].
reshape
(
raw_shape
),
axes
=
[
1
,
2
,
0
])
if
args
.
data_format
==
'NHWC'
else
x
[
0
],
data
)).
astype
(
"float32"
)
train_labels
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
'int64'
)
iter_begin_time
=
time
.
time
()
_
,
loss
,
acc
=
sess
.
run
([
train_op
,
avg_loss
,
accuracy
],
feed_dict
=
{
images
:
train_images
,
labels
:
train_labels
,
is_training
:
True
})
iters
+=
1
print
(
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed=%.2f imgs/sec"
%
(
pass_id
,
iters
,
loss
,
acc
,
len
(
data
)
/
(
time
.
time
()
-
iter_begin_time
)))
num_samples
+=
len
(
data
)
train_elapsed
=
time
.
time
()
-
start_time
# test
pass_test_acc
=
test
()
print
(
"Pass = %d, Train speed = %f imgs/s, Test accuracy = %f
\n
"
%
(
pass_id
,
num_samples
/
train_elapsed
,
pass_test_acc
))
def
print_arguments
():
print
(
'----------- Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
iteritems
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
if
__name__
==
'__main__'
:
print_arguments
()
ps_hosts
=
args
.
ps_hosts
.
split
(
","
)
worker_hosts
=
args
.
worker_hosts
.
split
(
","
)
# Create a cluster from the parameter server and worker hosts.
cluster_spec
=
tf
.
train
.
ClusterSpec
({
"ps"
:
ps_hosts
,
"worker"
:
worker_hosts
})
# Create and start a server for the local task.
server
=
tf
.
train
.
Server
(
cluster_spec
,
job_name
=
args
.
job_name
,
task_index
=
args
.
task_index
)
if
args
.
job_name
==
"ps"
:
print
(
"start pserver"
)
server
.
join
()
elif
args
.
job_name
==
"worker"
:
print
(
"start worker"
)
run_benchmark
(
cluster_spec
,
server
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录