Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
eef55ca7
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
eef55ca7
编写于
8月 03, 2017
作者:
Z
Zhuoyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remodify
上级
2b35fca1
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
108 addition
and
105 deletion
+108
-105
paddle/operators/gather_func.h
paddle/operators/gather_func.h
+41
-35
paddle/operators/scatter_func.h
paddle/operators/scatter_func.h
+67
-70
未找到文件。
paddle/operators/gather_func.h
浏览文件 @
eef55ca7
...
...
@@ -14,9 +14,9 @@ limitations under the License. */
#pragma once
#include <cstring>
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
#include "paddle/framework/ddim.h"
/**
* Return a new tensor from source tensor, gathered according to index
...
...
@@ -27,7 +27,7 @@ limitations under the License. */
template
<
typename
Place
,
typename
T
>
Tensor
*
Gather
(
Tensor
*
src
,
Tensor
*
index
)
{
// check index of shape 1-D
PADDLE_ENFORCE
(
index
->
dims
().
size
()
==
1
);
PADDLE_ENFORCE
(
index
->
dims
().
size
()
==
1
);
int
index_size
=
index
->
dims
()[
0
];
// Source shape
...
...
@@ -41,61 +41,67 @@ Tensor* Gather(Tensor* src, Tensor* index) {
/* slice size */
int
slice_size
=
1
;
for
(
unsigned
int
i
=
0
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
for
(
size_t
i
=
0
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
/* Gathering */
if
(
place
==
CPUPlace
())
{
// init for CPU
output
=
New_tensor
.
mutable_data
<
T
>
(
output_dims
,
CPUPlace
());
CPUGather
(
src
->
data
(),
index
->
data
(),
slice_size
,
new_tensor
->
mutable_data
());
}
else
{
// GPU
// init for GPU
output
=
New_tensor
.
mutable_data
<
T
>
(
output_dims
,
GPUPlace
());
/* how to specialize device??*/
GPUGather
(
d
,
src
->
data
(),
index
->
data
(),
slice_size
,
new_tensor
->
mutable_data
());
// init for CPU
output
=
New_tensor
.
mutable_data
<
T
>
(
output_dims
,
CPUPlace
());
CPUGather
(
src
->
data
(),
index
->
data
(),
slice_size
,
new_tensor
->
mutable_data
());
}
else
{
// GPU
// init for GPU
output
=
New_tensor
.
mutable_data
<
T
>
(
output_dims
,
GPUPlace
());
/* how to specialize device??*/
GPUGather
(
d
,
src
->
data
(),
index
->
data
(),
slice_size
,
new_tensor
->
mutable_data
());
}
return
New_tensor
;
}
/* Implementation of CPU copy */
template
<
typename
T
>
void
CPUGather
(
const
T
*
params
,
const
int
*
indices
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
)
{
template
<
typename
T
>
void
CPUGather
(
const
T
*
params
,
const
int
*
indices
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
)
{
const
size_t
slice_bytes
=
slice_size
*
sizeof
(
T
);
for
(
int
i
=
0
;
i
<
index_size
;
++
i
)
int
index_
=
indices
[
i
];
/* copy src[index_] to output[i] */
memcpy
(
output
+
i
*
slice_bytes
,
params
+
index_
*
slice_bytes
,
slice_bytes
);
for
(
size_t
i
=
0
;
i
<
index_size
;
++
i
)
{
int
index_
=
indices
[
i
];
/* copy src[index_] to output[i] */
memcpy
(
output
+
i
*
slice_bytes
,
params
+
index_
*
slice_bytes
,
slice_bytes
);
}
}
/* Implementation of GPU copy:
I suppose the GPUDevice& d, contains gpu_id and thread_id
d = cuda_stream(gpu_id_, stream_id_);
*/
template
<
typename
T
>
template
<
typename
T
>
void
GPUGather
(
const
GPUDevice
&
d
,
const
T
*
src
,
const
int
*
index
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
)
{
const
T
*
src
,
const
int
*
index
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
)
{
int
block_count
=
slice_size
*
index_size
;
int
thread_per_block
=
1024
;
GatherOpKernel
<
T
>
<<<
block_count
,
thread_per_block
,
0
,
d
.
stream
()
>>>
(
src
,
index
,
output
,
slice_size
,
indices_size
,
slice_size
,
out_size
);
GatherOpKernel
<
T
><<<
block_count
,
thread_per_block
,
0
,
d
.
stream
()
>>>
(
src
,
index
,
output
,
slice_size
,
indices_size
,
slice_size
,
out_size
);
}
template
<
typename
T
>
__global__
void
GatherOpKernel
(
const
T
*
params
,
const
int
*
indices
,
T
*
out
,
__global__
void
GatherOpKernel
(
const
T
*
params
,
const
int
*
indices
,
T
*
out
,
int64
indices_size
,
int64
slice_size
,
int64
out_size
)
{
/* I suppose we have the following macro,
int64
slice_size
,
int64
out_size
)
{
/* I suppose we have the following macro,
which I strongly suggest that we should put in cuda:
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
...
...
@@ -103,9 +109,9 @@ __global__ void GatherOpKernel(const T* params, const int* indices, T* out,
*/
CUDA_1D_KERNEL_LOOP
(
i
,
out_size
)
{
int
indices_i
=
i
/
slice_size
;
int
slice_i
=
i
-
indices_i
*
slice_size
;
// offset inside the slice
int
slice_i
=
i
-
indices_i
*
slice_size
;
// offset inside the slice
int
gather_i
=
indices
[
indices_i
];
int
params_i
=
gather_i
*
slice_size
+
slice_i
;
out
[
i
]
=
*
(
params
+
params_i
);
}
}
}
paddle/operators/scatter_func.h
浏览文件 @
eef55ca7
...
...
@@ -14,96 +14,93 @@ limitations under the License. */
#pragma once
#include <cstring>
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
#include "paddle/framework/ddim.h"
/**
* Return a updated tensor from source tensor, scattered according to index:
* dst[i] += src[index[i]]
* input[src]: type-T source Tensor
* input[
I
ndex]: type-int index Tensor (1-D)
* input[
i
ndex]: type-int index Tensor (1-D)
* return: output tensor
*/
template
<
typename
place
,
typename
T
>
void
ScatterUpdate_func
(
Tensor
*
Src
,
Tensor
*
Dst
,
Tensor
*
Index
)
{
// assert index is an int-type tensor
assert
(
Index
->
istype
(
int
));
// Source shape
auto
src_dims
=
Src
->
dims
();
auto
dst_dims
=
Dst
->
dims
();
DDim
output_dims
(
dims_src
);
// check Src shape and Dst shape should match
for
(
int
i
=
1
;
i
<
src_dims
.
size
();
i
++
)
assert
(
src_dims
[
i
]
==
dst_dims
[
i
]);
int
index_size
=
Index
->
dims
()[
0
];
/* slice size */
int
slice_size
=
1
;
for
(
unsigned
int
i
=
0
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
if
(
place
==
CPUPlace
())
{
// init
output
=
new_tensor
.
mutable_data
<
T
>
(
output_dims
,
CPUPlace
());
CPUScatterUpdate
(
src
->
data
(),
index
->
data
(),
slice_size
,
new_tensor
->
mutable_data
());
}
else
{
// GPU
// init
output
=
new_tensor
.
mutable_data
<
T
>
(
output_dims
,
GPUPlace
());
/* how to specialize device??*/
GPUScatterUpdate
(
d
,
src
->
data
(),
index
->
data
(),
slice_size
,
new_tensor
->
mutable_data
());
}
template
<
typename
Place
,
typename
T
>
void
ScatterUpdate
(
Tensor
*
src
,
Tensor
*
dst
,
Tensor
*
index
)
{
// Source shape
auto
src_dims
=
src
->
dims
();
auto
dst_dims
=
dst
->
dims
();
DDim
output_dims
(
dims_src
);
// check src shape and dst shape should match
for
(
size_t
i
=
1
;
i
<
src_dims
.
size
();
i
++
)
PADDLE_ENFORCE
(
src_dims
[
i
]
==
dst_dims
[
i
]);
int
index_size
=
index
->
dims
()[
0
];
/* slice size */
int
slice_size
=
1
;
for
(
size_t
i
=
0
;
i
<
src_dims
.
size
();
++
i
)
slice_size
*=
src_dims
[
i
];
if
(
place
==
CPUPlace
())
{
// init
output
=
new_tensor
.
mutable_data
<
T
>
(
output_dims
,
CPUPlace
());
CPUScatterUpdate
(
src
->
data
(),
index
->
data
(),
slice_size
,
new_tensor
->
mutable_data
());
}
else
{
// GPU
// init
output
=
new_tensor
.
mutable_data
<
T
>
(
output_dims
,
GPUPlace
());
/* how to specialize device??*/
GPUScatterUpdate
(
d
,
src
->
data
(),
index
->
data
(),
slice_size
,
new_tensor
->
mutable_data
());
}
}
/* Implementation of CPU copy */
template
<
typename
T
>
void
CPUScatterUpdate
(
const
T
*
src
,
const
int
*
Index
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
)
{
//const size_t slice_bytes = slice_size * sizeof(T);
for
(
int
i
=
0
;
i
<
index_size
;
++
i
)
int
index_
=
index
[
i
];
/* dst[index_] += src[index_]
add operation size: slice_size
*/
math
::
vAdd
<
T
>
(
slice_size
,
src
+
index_
*
slice_bytes
,
output
+
i
*
slice_bytes
,
output
+
i
*
slice_bytes
);
/* Scatter update, not just assign
memcpy(output + i * slice_bytes,
src + index_ * slice_bytes,
slice_bytes);
*/
template
<
typename
T
>
void
CPUScatterUpdate
(
const
T
*
src
,
const
int
*
index
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
)
{
// const size_t slice_bytes = slice_size * sizeof(T);
for
(
size_t
i
=
0
;
i
<
index_size
;
++
i
)
{
int
index_
=
index
[
i
];
math
::
vAdd
<
T
>
(
slice_size
,
src
+
index_
*
slice_bytes
,
output
+
i
*
slice_bytes
,
output
+
i
*
slice_bytes
);
}
}
/* Implementation of GPU scatter:
I suppose the GPUDevice& d, contains gpu_id and thread_id
d = cuda_stream(gpu_id_, stream_id_);
*/
template
<
typename
T
>
template
<
typename
T
>
void
GPUScatterUpdate
(
const
GPUDevice
&
d
,
const
T
*
src
,
const
int
*
Index
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
)
{
int
block_count
=
slice_size
*
index_size
;
int
thread_per_block
=
1024
;
ScatterOpKernel
<
T
>
<<<
block_count
,
thread_per_block
,
0
,
d
.
stream
()
>>>
(
src
,
Index
,
output
,
slice_size
,
indices_size
,
slice_size
,
out_size
);
const
T
*
src
,
const
int
*
index
,
const
int
slice_size
,
const
int
index_size
,
T
*
output
)
{
int
block_count
=
slice_size
*
index_size
;
int
thread_per_block
=
1024
;
ScatterOpKernel
<
T
><<<
block_count
,
thread_per_block
,
0
,
d
.
stream
()
>>>
(
src
,
index
,
output
,
slice_size
,
indices_size
,
slice_size
,
out_size
);
}
template
<
typename
T
>
__global__
void
ScatterOpKernel
(
const
T
*
params
,
const
int
*
indices
,
T
*
out
,
int64
indices_size
,
int64
slice_size
,
int64
out_size
)
{
/* I suppose we have the following macro,
__global__
void
ScatterOpKernel
(
const
T
*
params
,
const
int
*
indices
,
T
*
out
,
int64
indices_size
,
int64
slice_size
,
int64
out_size
)
{
/* I suppose we have the following macro,
which I strongly suggest that we should put in cuda:
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
...
...
@@ -111,9 +108,9 @@ __global__ void ScatterOpKernel(const T* params, const int* indices, T* out,
*/
CUDA_1D_KERNEL_LOOP
(
i
,
out_size
)
{
int
indices_i
=
i
/
slice_size
;
int
slice_i
=
i
-
indices_i
*
slice_size
;
// offset inside the slice
int
slice_i
=
i
-
indices_i
*
slice_size
;
// offset inside the slice
int
scatter_i
=
indices
[
indices_i
];
int
params_i
=
scatter_i
*
slice_size
+
slice_i
;
out
[
i
]
+=
*
(
params
+
params_i
);
}
}
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录