Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
eeebef9f
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
eeebef9f
编写于
5月 19, 2023
作者:
X
xiaoluomi
提交者:
GitHub
5月 19, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix rtdetr yaml and infer (#8268)
上级
79267419
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
14 addition
and
55 deletion
+14
-55
deploy/auto_compression/configs/rtdetr_hgnetv2_x_qat_dis.yaml
...oy/auto_compression/configs/rtdetr_hgnetv2_x_qat_dis.yaml
+1
-1
deploy/auto_compression/configs/rtdetr_r101vd_qat_dis.yaml
deploy/auto_compression/configs/rtdetr_r101vd_qat_dis.yaml
+1
-1
deploy/auto_compression/configs/rtdetr_reader.yml
deploy/auto_compression/configs/rtdetr_reader.yml
+12
-0
deploy/auto_compression/paddle_inference_eval.py
deploy/auto_compression/paddle_inference_eval.py
+0
-53
未找到文件。
deploy/auto_compression/configs/rtdetr_hgnetv2_x_qat_dis.yaml
浏览文件 @
eeebef9f
...
@@ -3,7 +3,7 @@ Global:
...
@@ -3,7 +3,7 @@ Global:
reader_config
:
configs/rtdetr_reader.yml
reader_config
:
configs/rtdetr_reader.yml
include_nms
:
True
include_nms
:
True
Evaluation
:
True
Evaluation
:
True
model_dir
:
./rtdetr_
r50vd_6x_coco/
model_dir
:
./rtdetr_
hgnetv2_x_6x_coco/
model_filename
:
model.pdmodel
model_filename
:
model.pdmodel
params_filename
:
model.pdiparams
params_filename
:
model.pdiparams
...
...
deploy/auto_compression/configs/rtdetr_r101vd_qat_dis.yaml
浏览文件 @
eeebef9f
...
@@ -3,7 +3,7 @@ Global:
...
@@ -3,7 +3,7 @@ Global:
reader_config
:
configs/rtdetr_reader.yml
reader_config
:
configs/rtdetr_reader.yml
include_nms
:
True
include_nms
:
True
Evaluation
:
True
Evaluation
:
True
model_dir
:
./rtdetr_
hgnetv2_x_6x_coco/
model_dir
:
./rtdetr_
r101vd_6x_coco/
model_filename
:
model.pdmodel
model_filename
:
model.pdmodel
params_filename
:
model.pdiparams
params_filename
:
model.pdiparams
...
...
deploy/auto_compression/configs/rtdetr_reader.yml
浏览文件 @
eeebef9f
...
@@ -12,6 +12,18 @@ TrainDataset:
...
@@ -12,6 +12,18 @@ TrainDataset:
anno_path
:
annotations/instances_val2017.json
anno_path
:
annotations/instances_val2017.json
dataset_dir
:
dataset/coco/
dataset_dir
:
dataset/coco/
EvalDataset
:
!COCODataSet
image_dir
:
val2017
anno_path
:
annotations/instances_val2017.json
dataset_dir
:
dataset/coco/
TestDataset
:
!COCODataSet
image_dir
:
val2017
anno_path
:
annotations/instances_val2017.json
dataset_dir
:
dataset/coco/
worker_num
:
0
worker_num
:
0
# preprocess reader in test
# preprocess reader in test
...
...
deploy/auto_compression/paddle_inference_eval.py
浏览文件 @
eeebef9f
...
@@ -284,48 +284,6 @@ def load_predictor(
...
@@ -284,48 +284,6 @@ def load_predictor(
return
predictor
,
rerun_flag
return
predictor
,
rerun_flag
def
get_current_memory_mb
():
"""
It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
And this function Current program is time-consuming.
"""
try
:
pkg
.
require
(
'pynvml'
)
except
:
from
pip._internal
import
main
main
([
'install'
,
'pynvml'
])
try
:
pkg
.
require
(
'psutil'
)
except
:
from
pip._internal
import
main
main
([
'install'
,
'psutil'
])
try
:
pkg
.
require
(
'GPUtil'
)
except
:
from
pip._internal
import
main
main
([
'install'
,
'GPUtil'
])
import
pynvml
import
psutil
import
GPUtil
gpu_id
=
int
(
os
.
environ
.
get
(
"CUDA_VISIBLE_DEVICES"
,
0
))
pid
=
os
.
getpid
()
p
=
psutil
.
Process
(
pid
)
info
=
p
.
memory_full_info
()
cpu_mem
=
info
.
uss
/
1024.0
/
1024.0
gpu_mem
=
0
gpu_percent
=
0
gpus
=
GPUtil
.
getGPUs
()
if
gpu_id
is
not
None
and
len
(
gpus
)
>
0
:
gpu_percent
=
gpus
[
gpu_id
].
load
pynvml
.
nvmlInit
()
handle
=
pynvml
.
nvmlDeviceGetHandleByIndex
(
0
)
meminfo
=
pynvml
.
nvmlDeviceGetMemoryInfo
(
handle
)
gpu_mem
=
meminfo
.
used
/
1024.0
/
1024.0
return
round
(
cpu_mem
,
4
),
round
(
gpu_mem
,
4
)
def
predict_image
(
predictor
,
def
predict_image
(
predictor
,
image_file
,
image_file
,
image_shape
=
[
640
,
640
],
image_shape
=
[
640
,
640
],
...
@@ -367,13 +325,7 @@ def predict_image(predictor,
...
@@ -367,13 +325,7 @@ def predict_image(predictor,
time_min
=
min
(
time_min
,
timed
)
time_min
=
min
(
time_min
,
timed
)
time_max
=
max
(
time_max
,
timed
)
time_max
=
max
(
time_max
,
timed
)
predict_time
+=
timed
predict_time
+=
timed
cpu_mem
,
gpu_mem
=
get_current_memory_mb
()
cpu_mems
+=
cpu_mem
gpu_mems
+=
gpu_mem
time_avg
=
predict_time
/
repeats
time_avg
=
predict_time
/
repeats
print
(
"[Benchmark]Avg cpu_mem:{} MB, avg gpu_mem: {} MB"
.
format
(
cpu_mems
/
repeats
,
gpu_mems
/
repeats
))
print
(
"[Benchmark]Inference time(ms): min={}, max={}, avg={}"
.
format
(
print
(
"[Benchmark]Inference time(ms): min={}, max={}, avg={}"
.
format
(
round
(
time_min
*
1000
,
2
),
round
(
time_min
*
1000
,
2
),
round
(
time_max
*
1000
,
1
),
round
(
time_avg
*
1000
,
1
)))
round
(
time_max
*
1000
,
1
),
round
(
time_avg
*
1000
,
1
)))
...
@@ -418,9 +370,6 @@ def eval(predictor, val_loader, metric, rerun_flag=False):
...
@@ -418,9 +370,6 @@ def eval(predictor, val_loader, metric, rerun_flag=False):
time_min
=
min
(
time_min
,
timed
)
time_min
=
min
(
time_min
,
timed
)
time_max
=
max
(
time_max
,
timed
)
time_max
=
max
(
time_max
,
timed
)
predict_time
+=
timed
predict_time
+=
timed
cpu_mem
,
gpu_mem
=
get_current_memory_mb
()
cpu_mems
+=
cpu_mem
gpu_mems
+=
gpu_mem
if
not
FLAGS
.
include_nms
:
if
not
FLAGS
.
include_nms
:
postprocess
=
PPYOLOEPostProcess
(
postprocess
=
PPYOLOEPostProcess
(
score_threshold
=
0.3
,
nms_threshold
=
0.6
)
score_threshold
=
0.3
,
nms_threshold
=
0.6
)
...
@@ -436,8 +385,6 @@ def eval(predictor, val_loader, metric, rerun_flag=False):
...
@@ -436,8 +385,6 @@ def eval(predictor, val_loader, metric, rerun_flag=False):
map_res
=
metric
.
get_results
()
map_res
=
metric
.
get_results
()
metric
.
reset
()
metric
.
reset
()
time_avg
=
predict_time
/
sample_nums
time_avg
=
predict_time
/
sample_nums
print
(
"[Benchmark]Avg cpu_mem:{} MB, avg gpu_mem: {} MB"
.
format
(
cpu_mems
/
sample_nums
,
gpu_mems
/
sample_nums
))
print
(
"[Benchmark]Inference time(ms): min={}, max={}, avg={}"
.
format
(
print
(
"[Benchmark]Inference time(ms): min={}, max={}, avg={}"
.
format
(
round
(
time_min
*
1000
,
2
),
round
(
time_min
*
1000
,
2
),
round
(
time_max
*
1000
,
1
),
round
(
time_avg
*
1000
,
1
)))
round
(
time_max
*
1000
,
1
),
round
(
time_avg
*
1000
,
1
)))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录