You need to sign in or sign up before continuing.
提交 ee7b3ed0 编写于 作者: Q qiaolongfei

use EigenScalar to get learning_rate from GPU device

上级 15b35f9a
......@@ -23,6 +23,9 @@ using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
template <typename Place, typename T>
class SGDOpKernel : public framework::OpKernel<T> {
......@@ -31,13 +34,14 @@ class SGDOpKernel : public framework::OpKernel<T> {
auto param = ctx.Input<Tensor>("Param");
auto grad = ctx.Input<Tensor>("Grad");
auto param_out = ctx.Output<Tensor>("ParamOut");
float lr = ctx.Input<Tensor>("LearningRate")->data<float>()[0];
auto learning_rate = ctx.Input<Tensor>("LearningRate");
param_out->mutable_data<T>(ctx.GetPlace());
auto p = EigenVector<T>::Flatten(*param);
auto g = EigenVector<T>::Flatten(*grad);
auto o = EigenVector<T>::Flatten(*param_out);
auto lr = EigenScalar<T>::From(*learning_rate);
auto place = ctx.GetEigenDevice<Place>();
o.device(place) = p - lr * g;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册