Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ee0fd78c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ee0fd78c
编写于
11月 19, 2018
作者:
P
peizhilin
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/develop' into windows/build
上级
8443961a
fd7e6431
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
530 addition
and
41 deletion
+530
-41
cmake/operators.cmake
cmake/operators.cmake
+1
-1
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+3
-1
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+0
-20
paddle/fluid/operators/conv_cudnn_op_cache.h
paddle/fluid/operators/conv_cudnn_op_cache.h
+21
-0
paddle/fluid/operators/conv_fusion_op.cc
paddle/fluid/operators/conv_fusion_op.cc
+48
-0
paddle/fluid/operators/conv_fusion_op.cu.cc
paddle/fluid/operators/conv_fusion_op.cu.cc
+187
-0
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+2
-9
paddle/fluid/operators/conv_op.h
paddle/fluid/operators/conv_op.h
+18
-2
paddle/fluid/platform/cudnn_helper.h
paddle/fluid/platform/cudnn_helper.h
+83
-0
paddle/fluid/platform/dynload/cudnn.h
paddle/fluid/platform/dynload/cudnn.h
+9
-8
python/paddle/fluid/tests/unittests/test_conv2d_fusion_op.py
python/paddle/fluid/tests/unittests/test_conv2d_fusion_op.py
+158
-0
未找到文件。
cmake/operators.cmake
浏览文件 @
ee0fd78c
...
...
@@ -110,7 +110,7 @@ function(op_library TARGET)
# Define operators that don't need pybind here.
foreach
(
manual_pybind_op
"compare_op"
"logical_op"
"nccl_op"
"tensor_array_read_write_op"
"tensorrt_engine_op"
)
"tensor_array_read_write_op"
"tensorrt_engine_op"
"conv_fusion_op"
)
if
(
"
${
TARGET
}
"
STREQUAL
"
${
manual_pybind_op
}
"
)
set
(
pybind_flag 1
)
endif
()
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
ee0fd78c
...
...
@@ -32,7 +32,7 @@ if (WITH_GPU AND TENSORRT_FOUND)
add_subdirectory
(
tensorrt
)
endif
()
register_operators
(
EXCLUDES warpctc_op
)
register_operators
(
EXCLUDES warpctc_op
conv_fusion_op
)
# warpctc_cudnn need cudnn 7 above
if
(
WITH_GPU AND NOT WIN32
)
...
...
@@ -41,6 +41,8 @@ if (WITH_GPU AND NOT WIN32)
else
()
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale
)
endif
()
op_library
(
conv_fusion_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(conv2d_fusion);
\n
"
)
else
()
op_library
(
warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale
)
endif
()
...
...
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
ee0fd78c
...
...
@@ -43,26 +43,6 @@ using DataLayout = platform::DataLayout;
template
<
typename
T
>
using
ScalingParamType
=
typename
platform
::
CudnnDataType
<
T
>::
ScalingParamType
;
static
constexpr
char
kCUDNNFwdAlgoCache
[]
=
"kCUDNNFwdAlgoCache"
;
static
constexpr
char
kCUDNNBwdDataAlgoCache
[]
=
"kCUDNNBwdDataAlgoCache"
;
static
constexpr
char
kCUDNNBwdFilterAlgoCache
[]
=
"kCUDNNBwdFilterAlgoCache"
;
static
constexpr
size_t
kCONV_CUDNN_WORKSPACE_LIMIT_BYTES
=
static_cast
<
size_t
>
(
1024
)
*
1024
*
1024
;
#if CUDNN_VERSION_MIN(6, 0, 5)
static
constexpr
size_t
kNUM_CUDNN_FWD_ALGS
=
CUDNN_CONVOLUTION_FWD_ALGO_COUNT
;
static
constexpr
size_t
kNUM_CUDNN_BWD_FILTER_ALGS
=
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT
;
static
constexpr
size_t
kNUM_CUDNN_BWD_DATA_ALGS
=
CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT
;
#else
// cuDNN v5 has no CUDNN_CONVOLUTION_FWD_ALGO_COUNT etc.
static
constexpr
size_t
kNUM_CUDNN_FWD_ALGS
=
7
;
static
constexpr
size_t
kNUM_CUDNN_BWD_FILTER_ALGS
=
4
;
static
constexpr
size_t
kNUM_CUDNN_BWD_DATA_ALGS
=
5
;
#endif
template
<
typename
T
>
class
CUDNNConvOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
paddle/fluid/operators/conv_cudnn_op_cache.h
浏览文件 @
ee0fd78c
...
...
@@ -17,10 +17,31 @@ limitations under the License. */
#include <functional>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/platform/cudnn_helper.h"
namespace
paddle
{
namespace
operators
{
static
constexpr
char
kCUDNNFwdAlgoCache
[]
=
"kCUDNNFwdAlgoCache"
;
static
constexpr
char
kCUDNNBwdDataAlgoCache
[]
=
"kCUDNNBwdDataAlgoCache"
;
static
constexpr
char
kCUDNNBwdFilterAlgoCache
[]
=
"kCUDNNBwdFilterAlgoCache"
;
static
constexpr
size_t
kCONV_CUDNN_WORKSPACE_LIMIT_BYTES
=
static_cast
<
size_t
>
(
1024
)
*
1024
*
1024
;
#if CUDNN_VERSION_MIN(6, 0, 5)
static
constexpr
size_t
kNUM_CUDNN_FWD_ALGS
=
CUDNN_CONVOLUTION_FWD_ALGO_COUNT
;
static
constexpr
size_t
kNUM_CUDNN_BWD_FILTER_ALGS
=
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT
;
static
constexpr
size_t
kNUM_CUDNN_BWD_DATA_ALGS
=
CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT
;
#else
// cuDNN v5 has no CUDNN_CONVOLUTION_FWD_ALGO_COUNT etc.
static
constexpr
size_t
kNUM_CUDNN_FWD_ALGS
=
7
;
static
constexpr
size_t
kNUM_CUDNN_BWD_FILTER_ALGS
=
4
;
static
constexpr
size_t
kNUM_CUDNN_BWD_DATA_ALGS
=
5
;
#endif
template
<
typename
TAlgorithm
>
class
AlgorithmsCache
{
public:
...
...
paddle/fluid/operators/conv_fusion_op.cc
0 → 100644
浏览文件 @
ee0fd78c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include <vector>
#include "paddle/fluid/operators/conv_op.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
namespace
paddle
{
namespace
operators
{
// This fused conv follows the equation:
// y = act ( alpha1 * conv(x) + alpha2 * z + bias ).
// here, y is Output,
// x is Input,
// z is ResidualData,
// bias is Bias
class
Conv2DFusionOpMaker
:
public
Conv2DOpMaker
{
protected:
void
Apply
()
override
{
AddAttr
<
std
::
string
>
(
"activation"
,
"The activation type can be 'identity', 'sigmoid', 'relu', 'relu6' "
"'relux' , 'tanh', 'band_pass'"
)
.
SetDefault
(
"relu"
);
}
};
// TODO(qingqing): add gradient operator for conv2d_fusion
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
conv2d_fusion
,
ops
::
ConvOp
,
ops
::
Conv2DFusionOpMaker
,
ops
::
ConvOpInferVarType
,
paddle
::
framework
::
EmptyGradOpMaker
);
paddle/fluid/operators/conv_fusion_op.cu.cc
0 → 100644
浏览文件 @
ee0fd78c
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_helper.h"
DECLARE_uint64
(
conv_workspace_size_limit
);
DECLARE_bool
(
cudnn_exhaustive_search
);
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
ScopedTensorDescriptor
=
platform
::
ScopedTensorDescriptor
;
using
ScopedFilterDescriptor
=
platform
::
ScopedFilterDescriptor
;
using
ScopedConvolutionDescriptor
=
platform
::
ScopedConvolutionDescriptor
;
using
ScopedActivationDescriptor
=
platform
::
ScopedActivationDescriptor
;
using
DataLayout
=
platform
::
DataLayout
;
template
<
typename
T
>
using
ScalingParamType
=
typename
platform
::
CudnnDataType
<
T
>::
ScalingParamType
;
template
<
typename
T
>
class
CUDNNConvFusionOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"Input"
);
auto
*
filter
=
ctx
.
Input
<
Tensor
>
(
"Filter"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
PADDLE_ENFORCE
(
bias
,
"The bias should not be null."
);
auto
*
residual
=
ctx
.
Input
<
Tensor
>
(
"ResidualData"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Output"
);
std
::
vector
<
int
>
strides
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
paddings
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
dilations
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"dilations"
);
const
std
::
string
activation
=
ctx
.
Attr
<
std
::
string
>
(
"activation"
);
int
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
int64_t
user_workspace_size
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"workspace_size_MB"
));
bool
exhaustive_search
=
FLAGS_cudnn_exhaustive_search
||
ctx
.
Attr
<
bool
>
(
"exhaustive_search"
);
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
filter_data
=
filter
->
data
<
T
>
();
const
T
*
bias_data
=
bias
->
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
T
*
residual_data
=
residual
?
residual
->
data
<
T
>
()
:
output_data
;
// ------------------- cudnn descriptors ---------------------
ScopedTensorDescriptor
input_desc
;
ScopedTensorDescriptor
output_desc
;
ScopedFilterDescriptor
filter_desc
;
ScopedTensorDescriptor
bias_desc
;
ScopedConvolutionDescriptor
conv_desc
;
ScopedActivationDescriptor
act_desc
;
DataLayout
layout
=
DataLayout
::
kNCHW
;
if
(
input
->
dims
().
size
()
==
5
)
{
layout
=
DataLayout
::
kNCDHW
;
}
cudnnConvolutionDescriptor_t
cudnn_conv_desc
=
conv_desc
.
descriptor
<
T
>
(
paddings
,
strides
,
dilations
);
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionGroupCount
(
cudnn_conv_desc
,
groups
));
cudnnTensorDescriptor_t
cudnn_input_desc
=
input_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
input
->
dims
()));
cudnnTensorDescriptor_t
cudnn_output_desc
=
output_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
output
->
dims
()));
cudnnFilterDescriptor_t
cudnn_filter_desc
=
filter_desc
.
descriptor
<
T
>
(
layout
,
framework
::
vectorize2int
(
filter
->
dims
()));
// Now only support NCHW
std
::
vector
<
int
>
bias_dim
=
{
1
,
static_cast
<
int
>
(
output
->
dims
()[
1
]),
1
,
1
};
cudnnTensorDescriptor_t
cudnn_bias_desc
=
bias_desc
.
descriptor
<
T
>
(
layout
,
bias_dim
);
cudnnActivationDescriptor_t
cudnn_act_desc
=
act_desc
.
descriptor
<
T
>
(
activation
);
// ------------------- cudnn conv workspace ---------------------
size_t
workspace_size_in_bytes
;
// final workspace to allocate.
size_t
workspace_size_limit
=
kCONV_CUDNN_WORKSPACE_LIMIT_BYTES
;
if
(
FLAGS_conv_workspace_size_limit
>
0
||
user_workspace_size
>
0
)
{
int64_t
max_user_size
=
std
::
max
(
static_cast
<
int64_t
>
(
FLAGS_conv_workspace_size_limit
),
user_workspace_size
);
workspace_size_limit
=
max_user_size
*
1024
*
1024
;
}
// ------------------- cudnn conv algorithm ---------------------
cudnnConvolutionFwdAlgo_t
algo
;
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnSetConvolutionMathType
(
cudnn_conv_desc
,
CUDNN_DEFAULT_MATH
));
auto
x_dims
=
framework
::
vectorize
(
input
->
dims
());
auto
f_dims
=
framework
::
vectorize
(
filter
->
dims
());
if
(
activation
==
"identity"
)
{
// Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algo is
// enabled with CUDNN_ACTIVATION_IDENTITY in cuDNN lib.
algo
=
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
;
}
else
if
(
!
exhaustive_search
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardAlgorithm
(
handle
,
cudnn_input_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_output_desc
,
CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT
,
workspace_size_limit
,
&
algo
));
VLOG
(
3
)
<<
"cuDNN forward algo "
<<
algo
;
}
else
{
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>*
algo_cache
=
nullptr
;
if
(
ctx
.
scope
().
FindVar
(
kCUDNNFwdAlgoCache
))
{
algo_cache
=
ctx
.
scope
()
.
FindVar
(
kCUDNNFwdAlgoCache
)
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
();
}
else
{
algo_cache
=
const_cast
<
framework
::
Scope
&>
(
ctx
.
scope
())
.
Var
(
kCUDNNFwdAlgoCache
)
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
();
}
algo
=
algo_cache
->
GetAlgorithm
(
x_dims
,
f_dims
,
strides
,
paddings
,
dilations
,
0
,
[
&
]()
{
int
returned_algo_count
;
std
::
array
<
cudnnConvolutionFwdAlgoPerf_t
,
kNUM_CUDNN_FWD_ALGS
>
fwd_perf_stat
;
auto
cudnn_find_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnFindConvolutionForwardAlgorithmEx
(
handle
,
cudnn_input_desc
,
input_data
,
cudnn_filter_desc
,
filter_data
,
cudnn_conv_desc
,
cudnn_output_desc
,
output_data
,
kNUM_CUDNN_FWD_ALGS
,
&
returned_algo_count
,
fwd_perf_stat
.
data
(),
cudnn_workspace
,
workspace_size_limit
));
};
workspace_handle
.
RunFunc
(
cudnn_find_func
,
workspace_size_limit
);
VLOG
(
3
)
<<
"Perf result: (algo: stat, time, memory)"
;
for
(
int
i
=
0
;
i
<
returned_algo_count
;
++
i
)
{
const
auto
&
stat
=
fwd_perf_stat
[
i
];
VLOG
(
3
)
<<
stat
.
algo
<<
": "
<<
stat
.
status
<<
" "
<<
stat
.
time
<<
" "
<<
stat
.
memory
;
}
return
fwd_perf_stat
[
0
].
algo
;
});
VLOG
(
3
)
<<
"choose algo "
<<
algo
;
}
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnGetConvolutionForwardWorkspaceSize
(
handle
,
cudnn_input_desc
,
cudnn_filter_desc
,
cudnn_conv_desc
,
cudnn_output_desc
,
algo
,
&
workspace_size_in_bytes
));
PADDLE_ENFORCE_LE
(
workspace_size_in_bytes
,
workspace_size_limit
,
"workspace_size to be allocated exceeds the limit"
);
// ------------------- cudnn conv+bias+act forward --------------------
ScalingParamType
<
T
>
alpha1
=
1.0
f
;
ScalingParamType
<
T
>
alpha2
=
residual
?
1.0
f
:
0.0
f
;
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBiasActivationForward
(
handle
,
&
alpha1
,
cudnn_input_desc
,
input_data
,
cudnn_filter_desc
,
filter_data
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
alpha2
,
cudnn_output_desc
,
residual_data
,
cudnn_bias_desc
,
bias_data
,
cudnn_act_desc
,
cudnn_output_desc
,
output_data
));
};
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
conv2d_fusion
,
ops
::
CUDNNConvFusionOpKernel
<
float
>
,
ops
::
CUDNNConvFusionOpKernel
<
double
>
);
paddle/fluid/operators/conv_op.cc
浏览文件 @
ee0fd78c
...
...
@@ -225,17 +225,9 @@ $$
W_{out}= \frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
$$
)DOC"
);
Apply
();
}
class
ConvOpInferVarType
:
public
framework
::
PassInDtypeAndVarTypeToOutput
{
protected:
std
::
unordered_map
<
std
::
string
,
std
::
string
>
GetInputOutputWithSameType
()
const
override
{
return
std
::
unordered_map
<
std
::
string
,
std
::
string
>
{
{
"Input"
,
/*->*/
"Output"
}};
}
};
void
Conv3DOpMaker
::
Make
()
{
AddInput
(
"Input"
,
...
...
@@ -334,6 +326,7 @@ Example:
W_{out}= \frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
$$
)DOC"
);
Apply
();
}
void
ConvOpGrad
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
...
...
paddle/fluid/operators/conv_op.h
浏览文件 @
ee0fd78c
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -60,12 +61,27 @@ inline bool IsExpand(const std::vector<int64_t>& filter_dim,
// operator implementations can reuse the code.
class
Conv2DOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
void
Make
()
final
;
protected:
virtual
void
Apply
()
{}
};
class
Conv3DOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
;
void
Make
()
final
;
protected:
virtual
void
Apply
()
{}
};
class
ConvOpInferVarType
:
public
framework
::
PassInDtypeAndVarTypeToOutput
{
protected:
std
::
unordered_map
<
std
::
string
,
std
::
string
>
GetInputOutputWithSameType
()
const
override
{
return
std
::
unordered_map
<
std
::
string
,
std
::
string
>
{
{
"Input"
,
/*->*/
"Output"
}};
}
};
class
ConvOp
:
public
framework
::
OperatorWithKernel
{
...
...
paddle/fluid/platform/cudnn_helper.h
浏览文件 @
ee0fd78c
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/operator.h"
...
...
@@ -81,6 +82,16 @@ enum class PoolingMode {
kAverageInclusive
,
};
enum
ActivationMode
{
kNone
,
// activation identity
kSigmoid
,
kRelu
,
kRelu6
,
kReluX
,
kTanh
,
kBandPass
,
};
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
...
...
@@ -120,6 +131,26 @@ inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
}
#endif // CUDNN_VERSION < 6000
inline
ActivationMode
StringToActivationMode
(
const
std
::
string
&
str
)
{
if
(
str
==
"identity"
)
{
return
ActivationMode
::
kNone
;
}
else
if
(
str
==
"sigmoid"
)
{
return
ActivationMode
::
kSigmoid
;
}
else
if
(
str
==
"relu"
)
{
return
ActivationMode
::
kRelu
;
}
else
if
(
str
==
"relu6"
)
{
return
ActivationMode
::
kRelu6
;
}
else
if
(
str
==
"relux"
)
{
return
ActivationMode
::
kReluX
;
}
else
if
(
str
==
"tanh"
)
{
return
ActivationMode
::
kTanh
;
}
else
if
(
str
==
"bandpass"
)
{
return
ActivationMode
::
kBandPass
;
}
else
{
PADDLE_THROW
(
"Unknown activation string: %s"
,
str
);
}
}
template
<
typename
T
>
class
CudnnDataType
;
...
...
@@ -368,6 +399,58 @@ class ScopedSpatialTransformerDescriptor {
DISABLE_COPY_AND_ASSIGN
(
ScopedSpatialTransformerDescriptor
);
};
class
ScopedActivationDescriptor
{
public:
ScopedActivationDescriptor
()
{
PADDLE_ENFORCE
(
dynload
::
cudnnCreateActivationDescriptor
(
&
desc_
));
}
~
ScopedActivationDescriptor
()
{
PADDLE_ENFORCE
(
dynload
::
cudnnDestroyActivationDescriptor
(
desc_
));
}
template
<
typename
T
>
inline
cudnnActivationDescriptor_t
descriptor
(
const
std
::
string
&
act
,
double
value_max
=
static_cast
<
double
>
(
0.
))
{
double
relu_ceiling
=
0.0
;
ActivationMode
activation_mode
=
StringToActivationMode
(
act
);
cudnnActivationMode_t
mode
;
switch
(
activation_mode
)
{
#if CUDNN_VERSION >= 7100
case
ActivationMode
::
kNone
:
mode
=
CUDNN_ACTIVATION_IDENTITY
;
break
;
#endif
case
ActivationMode
::
kRelu6
:
relu_ceiling
=
6.0
;
mode
=
CUDNN_ACTIVATION_CLIPPED_RELU
;
break
;
case
ActivationMode
::
kReluX
:
relu_ceiling
=
value_max
;
mode
=
CUDNN_ACTIVATION_CLIPPED_RELU
;
break
;
case
ActivationMode
::
kRelu
:
mode
=
CUDNN_ACTIVATION_RELU
;
break
;
case
ActivationMode
::
kSigmoid
:
mode
=
CUDNN_ACTIVATION_SIGMOID
;
break
;
case
ActivationMode
::
kTanh
:
mode
=
CUDNN_ACTIVATION_TANH
;
break
;
default:
PADDLE_THROW
(
"unrecognized activation mode: %d ."
,
static_cast
<
int
>
(
activation_mode
));
}
CUDNN_ENFORCE
(
dynload
::
cudnnSetActivationDescriptor
(
desc_
,
mode
,
CUDNN_NOT_PROPAGATE_NAN
,
relu_ceiling
));
return
desc_
;
}
private:
cudnnActivationDescriptor_t
desc_
;
DISABLE_COPY_AND_ASSIGN
(
ScopedActivationDescriptor
);
};
inline
bool
CanCUDNNBeUsed
(
const
framework
::
ExecutionContext
&
ctx
)
{
bool
use_cudnn
=
ctx
.
Attr
<
bool
>
(
"use_cudnn"
);
use_cudnn
&=
paddle
::
platform
::
is_gpu_place
(
ctx
.
GetPlace
());
...
...
paddle/fluid/platform/dynload/cudnn.h
浏览文件 @
ee0fd78c
...
...
@@ -152,14 +152,15 @@ CUDNN_DNN_ROUTINE_EACH_R5(DECLARE_DYNAMIC_LOAD_CUDNN_WRAP)
#endif
#if CUDNN_VERSION >= 7001
#define CUDNN_DNN_ROUTINE_EACH_R7(__macro) \
__macro(cudnnSetConvolutionGroupCount); \
__macro(cudnnSetConvolutionMathType); \
__macro(cudnnCreateCTCLossDescriptor); \
__macro(cudnnDestroyCTCLossDescriptor); \
__macro(cudnnGetCTCLossDescriptor); \
__macro(cudnnSetCTCLossDescriptor); \
__macro(cudnnGetCTCLossWorkspaceSize); \
#define CUDNN_DNN_ROUTINE_EACH_R7(__macro) \
__macro(cudnnSetConvolutionGroupCount); \
__macro(cudnnSetConvolutionMathType); \
__macro(cudnnConvolutionBiasActivationForward); \
__macro(cudnnCreateCTCLossDescriptor); \
__macro(cudnnDestroyCTCLossDescriptor); \
__macro(cudnnGetCTCLossDescriptor); \
__macro(cudnnSetCTCLossDescriptor); \
__macro(cudnnGetCTCLossWorkspaceSize); \
__macro(cudnnCTCLoss);
CUDNN_DNN_ROUTINE_EACH_R7
(
DECLARE_DYNAMIC_LOAD_CUDNN_WRAP
)
#endif
...
...
python/paddle/fluid/tests/unittests/test_conv2d_fusion_op.py
0 → 100644
浏览文件 @
ee0fd78c
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
test_conv2d_op
import
conv2d_forward_naive
class
TestConv2dFusionOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"conv2d_fusion"
self
.
exhaustive_search
=
False
self
.
data_format
=
"AnyLayout"
self
.
dtype
=
np
.
float32
self
.
activation
=
'relu'
self
.
add_bias
=
True
self
.
add_residual_data
=
True
self
.
init_group
()
self
.
init_dilation
()
self
.
init_test_case
()
self
.
init_bias_residual
()
self
.
init_activation
()
self
.
set_search_method
()
conv2d_param
=
{
'stride'
:
self
.
stride
,
'pad'
:
self
.
pad
,
'dilation'
:
self
.
dilations
}
input
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
filter
=
np
.
random
.
random
(
self
.
filter_size
).
astype
(
self
.
dtype
)
output
=
conv2d_forward_naive
(
input
,
filter
,
self
.
groups
,
conv2d_param
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'Input'
:
OpTest
.
np_dtype_to_fluid_dtype
(
input
),
'Filter'
:
OpTest
.
np_dtype_to_fluid_dtype
(
filter
)
}
if
self
.
add_residual_data
:
residual_data
=
np
.
random
.
random
(
output
.
shape
).
astype
(
self
.
dtype
)
self
.
inputs
[
'ResidualData'
]
=
OpTest
.
np_dtype_to_fluid_dtype
(
residual_data
)
output
+=
residual_data
if
self
.
add_bias
:
bias
=
np
.
random
.
random
(
self
.
filter_size
[
0
]).
astype
(
self
.
dtype
)
self
.
inputs
[
'Bias'
]
=
OpTest
.
np_dtype_to_fluid_dtype
(
bias
)
output
=
output
+
bias
.
reshape
((
1
,
bias
.
size
,
1
,
1
))
assert
self
.
activation
in
[
'relu'
,
'identity'
]
if
self
.
activation
==
'relu'
:
output
=
np
.
maximum
(
output
,
0
)
self
.
attrs
=
{
'strides'
:
self
.
stride
,
'paddings'
:
self
.
pad
,
'groups'
:
self
.
groups
,
'dilations'
:
self
.
dilations
,
'data_format'
:
self
.
data_format
,
'exhaustive_search'
:
self
.
exhaustive_search
,
'activation'
:
self
.
activation
}
self
.
outputs
=
{
'Output'
:
output
}
def
testcuda
(
self
):
return
core
.
is_compiled_with_cuda
()
def
test_check_output
(
self
):
if
self
.
testcuda
():
place
=
core
.
CUDAPlace
(
0
)
self
.
check_output_with_place
(
place
,
atol
=
1e-5
)
else
:
pass
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
def
init_dilation
(
self
):
self
.
dilations
=
[
1
,
1
]
def
init_group
(
self
):
self
.
groups
=
1
def
init_bias_residual
(
self
):
self
.
add_bias
=
True
self
.
add_residual_data
=
True
def
init_activation
(
self
):
self
.
activation
=
'relu'
def
set_search_method
(
self
):
self
.
exhaustive_search
=
False
class
TestWithoutResidual
(
TestConv2dFusionOp
):
def
init_bias_residual
(
self
):
self
.
add_residual_data
=
False
class
TestIdentityActivation
(
TestConv2dFusionOp
):
def
init_activation
(
self
):
self
.
activation
=
'identity'
class
TestWithGroup
(
TestConv2dFusionOp
):
def
init_group
(
self
):
self
.
groups
=
3
class
TestWithDilation
(
TestConv2dFusionOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
10
,
10
]
# NCHW
assert
np
.
mod
(
self
.
input_size
[
1
],
self
.
groups
)
==
0
f_c
=
self
.
input_size
[
1
]
//
self
.
groups
self
.
filter_size
=
[
6
,
f_c
,
3
,
3
]
def
init_dilation
(
self
):
self
.
dilations
=
[
2
,
2
]
def
init_group
(
self
):
self
.
groups
=
3
class
TestCUDNNExhaustiveSearch
(
TestConv2dFusionOp
):
def
set_search_method
(
self
):
self
.
exhaustive_search
=
True
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录