提交 ed9fc20a 编写于 作者: Z zhiboniu 提交者: zhiboniu

add custom data modify guide

上级 0f9f93e5
......@@ -21,9 +21,9 @@
- [模型部署](#模型部署)
- [Top-Down模型联合部署](#top-down模型联合部署)
- [Bottom-Up模型独立部署](#bottom-up模型独立部署)
- [与多目标跟踪联合部署](#与多目标跟踪模型fairmot联合部署预测)
- [与多目标跟踪联合部署](#与多目标跟踪模型fairmot联合部署)
- [自定义数据训练](#自定义数据训练)
- [BenchMark](#benchmark)
## 简介
......@@ -36,14 +36,14 @@ PaddleDetection 关键点检测能力紧跟业内最新最优算法方案,包
|检测模型| 关键点模型 | 输入尺寸 | COCO数据集精度| 平均推理耗时 (FP16) | 模型权重 | Paddle-Lite部署模型(FP16)|
| :----| :------------------------ | :-------: | :------: | :------: | :---: | :---: |
| :----| :------------------------ | :-------: | :------: | :------: | :---: | :---: |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml) |[PP-TinyPose](./tinypose_128x96.yml) | 检测:192x192<br>关键点:128x96 | 检测mAP:29.0<br>关键点AP:58.1 | 检测耗时:2.37ms<br>关键点耗时:3.27ms | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml) |[PP-TinyPose](./tinypose_256x192.yml)| 检测:320x320<br>关键点:256x192 | 检测mAP:38.5<br>关键点AP:68.8 | 检测耗时:6.30ms<br>关键点耗时:8.33ms | [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams)| [检测](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[关键点](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
*详细关于PP-TinyPose的使用请参考[文档]((./tiny_pose/README.md))。
### 服务端模型推荐
|检测模型| 关键点模型 | 输入尺寸 | COCO数据集精度| 模型权重 |
|检测模型| 关键点模型 | 输入尺寸 | COCO数据集精度| 模型权重 |
| :----| :------------------------ | :-------: | :------: | :------: |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) |[HRNet-w32](./hrnet/hrnet_w32_384x288.yml)| 检测:640x640<br>关键点:384x288 | 检测mAP:49.5<br>关键点AP:77.8 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) |[HRNet-w32](./hrnet/hrnet_w32_256x192.yml) | 检测:640x640<br>关键点:256x192 | 检测mAP:49.5<br>关键点AP:76.9 | [检测](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[关键点](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) |
......@@ -51,7 +51,7 @@ PaddleDetection 关键点检测能力紧跟业内最新最优算法方案,包
## 模型库
COCO数据集
| 模型 | 方案 |输入尺寸 | AP(coco val) | 模型下载 | 配置文件 |
| 模型 | 方案 |输入尺寸 | AP(coco val) | 模型下载 | 配置文件 |
| :---------------- | -------- | :----------: | :----------------------------------------------------------: | ----------------------------------------------------| ------- |
| HigherHRNet-w32 |Bottom-Up| 512 | 67.1 | [higherhrnet_hrnet_w32_512.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_512.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_512.yml) |
| HigherHRNet-w32 | Bottom-Up| 640 | 68.3 | [higherhrnet_hrnet_w32_640.pdparams](https://paddledet.bj.bcebos.com/models/keypoint/higherhrnet_hrnet_w32_640.pdparams) | [config](./higherhrnet/higherhrnet_hrnet_w32_640.yml) |
......@@ -145,7 +145,7 @@ CUDA_VISIBLE_DEVICES=0 python3 tools/infer.py -c configs/keypoint/higherhrnet/hi
##### Top-Down模型联合部署
```shell
#导出检测模型
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
#导出关键点模型
python tools/export_model.py -c configs/keypoint/hrnet/hrnet_w32_256x192.yml -o weights=https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
......@@ -174,6 +174,45 @@ python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inferenc
**注意:**
跟踪模型导出教程请参考[文档](../mot/README.md)
### 4、完整部署教程及Demo
​ 我们提供了PaddleInference(服务器端)、PaddleLite(移动端)、第三方部署(MNN、OpenVino)支持。无需依赖训练代码,deploy文件夹下相应文件夹提供独立完整部署代码。 详见 [部署文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/README.md)介绍。
## 自定义数据训练
我们以[tinypose_256x192](.tiny_pose/README.md)为例来说明对于自定义数据如何修改:
#### 1、配置文件[tinypose_256x192.yml](../../configs/keypoint/tiny_pose/tinypose_256x192.yml)
基本的修改内容及其含义如下:
```
num_joints: &num_joints 17 #自定义数据的关键点数量
train_height: &train_height 256 #训练图片尺寸-高度h
train_width: &train_width 192 #训练图片尺寸-宽度w
hmsize: &hmsize [48, 64] #对应训练尺寸的输出尺寸,这里是输入[w,h]的1/4
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] #关键点定义中左右对称的关键点,用于flip增强。若没有对称结构在 TrainReader 的 RandomFlipHalfBodyTransform 一栏中 flip_pairs 后面加一行 "flip: False"(注意缩紧对齐)
num_joints_half_body: 8 #半身关键点数量,用于半身增强
prob_half_body: 0.3 #半身增强实现概率,若不需要则修改为0
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] #上半身对应关键点id,用于半身增强中获取上半身对应的关键点。
```
上述是自定义数据时所需要的修改部分,完整的配置及含义说明可参考文件:[关键点配置文件说明](../../docs/tutorials/KeyPointConfigGuide_cn.md)
#### 2、其他代码修改(影响测试、可视化)
- keypoint_utils.py中的sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07,.87, .87, .89, .89]) / 10.0,表示每个关键点的确定范围方差,根据实际关键点可信区域设置,区域精确的一般0.25-0.5,例如眼睛。区域范围大的一般0.5-1.0,例如肩膀。若不确定建议0.75。
- visualizer.py中的draw_pose函数中的EDGES,表示可视化时关键点之间的连接线关系。
- pycocotools工具中的sigmas,同第一个keypoint_utils.py中的设置。用于coco指标评估时计算。
#### 3、数据准备注意
- 训练数据请按coco数据格式处理。需要包括关键点[Nx3]、检测框[N]标注。
- 请注意area>0,area=0时数据会被过滤掉。
如有遗漏,欢迎反馈
## BenchMark
我们给出了不同运行环境下的测试结果,供您在选用模型时参考。详细数据请见[Keypoint Inference Benchmark](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/KeypointBenchmark.md)
## 引用
```
......
......@@ -16,14 +16,15 @@
- [Deploy Inference](#deploy-inference)
- [Deployment for Top-Down models](#deployment-for-top-down-models)
- [Deployment for Bottom-Up models](#deployment-for-bottom-up-models)
- [joint inference with Multi-Object Tracking model FairMOT](#joint-inference-with-multi-object-tracking-model-fairmot)
- [Joint Inference with Multi-Object Tracking Model FairMOT](#joint-inference-with-multi-object-tracking-model-fairmot)
- [Train with custom data](#Train-with-custom-data)
- [BenchMark](#benchmark)
## Introduction
The keypoint detection part in PaddleDetection follows the state-of-the-art algorithm closely, including Top-Down and Bottom-Up methods, which can satisfy the different needs of users.
The keypoint detection part in PaddleDetection follows the state-of-the-art algorithm closely, including Top-Down and Bottom-Up methods, which can satisfy the different needs of users.
Top-Down detects the object first and then detect the specific keypoint. The accuracy of Top-Down models will be higher, but the time required will increase by the number of objects.
Top-Down detects the object first and then detect the specific keypoint. The accuracy of Top-Down models will be higher, but the time required will increase by the number of objects.
Differently, Bottom-Up detects the point first and then group or connect those points to form several instances of human pose. The speed of Bottom-Up is fixed and will not increase by the number of objects, but the accuracy will be lower.
......@@ -36,7 +37,7 @@ At the same time, PaddleDetection provides [PP-TinyPose](./tiny_pose/README.md)
## Model Recommendation
### Mobile Terminal
|Detection Model| Keypoint Model | Input Size | Accuracy of COCO| Average Inference Time (FP16) | Model Weight | Paddle-Lite Inference Model(FP16)|
| :----| :------------------------ | :-------: | :------: | :------: | :---: | :---: |
| :----| :------------------------ | :-------: | :------: | :------: | :---: | :---: |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml) |[PP-TinyPose](./tinypose_128x96.yml) | Detection:192x192<br>Keypoint:128x96 | Detection mAP:29.0<br>Keypoint AP:58.1 | Detection:2.37ms<br>Keypoint:3.27ms | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams) | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16.nb)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96_fp16.nb) |
| [PicoDet-S-Pedestrian](../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml) |[PP-TinyPose](./tinypose_256x192.yml)| Detection:320x320<br>Keypoint:256x192 | Detection mAP:38.5<br>Keypoint AP:68.8 | Detection:6.30ms<br>Keypoint:8.33ms | [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_128x96.pdparams)| [Detection](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16.nb)<br>[Keypoint](https://bj.bcebos.com/v1/paddledet/models/keypoint/tinypose_256x192_fp16.nb) |
......@@ -44,7 +45,7 @@ At the same time, PaddleDetection provides [PP-TinyPose](./tiny_pose/README.md)
### Teminal Server
|Detection Model| Keypoint Model | Input Size | Accuracy of COCO| Model Weight |
|Detection Model| Keypoint Model | Input Size | Accuracy of COCO| Model Weight |
| :----| :------------------------ | :-------: | :------: | :------: |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) |[HRNet-w32](./hrnet/hrnet_w32_384x288.yml)| Detection:640x640<br>Keypoint:384x288 | Detection mAP:49.5<br>Keypoint AP:77.8 | [Detection](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[Keypoint](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams) |
| [PP-YOLOv2](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.3/configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml) |[HRNet-w32](./hrnet/hrnet_w32_256x192.yml) | Detection:640x640<br>Keypoint:256x192 | Detection mAP:49.5<br>Keypoint AP:76.9 | [Detection](https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams)<br>[Keypoint](https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_384x288.pdparams) |
......@@ -140,7 +141,7 @@ CUDA_VISIBLE_DEVICES=0 python3 tools/infer.py -c configs/keypoint/higherhrnet/hi
```shell
#Export Detection Model
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyolov2_r50vd_dcn_365e_coco.pdparams
#Export Keypoint Model
python tools/export_model.py -c configs/keypoint/hrnet/hrnet_w32_256x192.yml -o weights=https://paddledet.bj.bcebos.com/models/keypoint/hrnet_w32_256x192.pdparams
......@@ -170,6 +171,44 @@ python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inferenc
**Note:**
To export MOT model, please refer to [Here](../../configs/mot/README_en.md).
### 4.Complete Deploy Instruction and Demo
​ We provide standalone deploy of PaddleInference(Server-GPU)、PaddleLite(mobile、ARM)、Third-Engine(MNN、OpenVino), which is independent of training codes。For detail, please click [Deploy-docs](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/README_en.md)
## Train with custom data
We take an example of [tinypose_256x192](.tiny_pose/README_en.md) to show how to train with custom data.
#### 1、For configs [tinypose_256x192.yml](../../configs/keypoint/tiny_pose/tinypose_256x192.yml)
you may need to modity these for your job:
```
num_joints: &num_joints 17 #the number of joints in your job
train_height: &train_height 256 #the height of model input
train_width: &train_width 192 #the width of model input
hmsize: &hmsize [48, 64] #the shape of model output,usually 1/4 of [w,h]
flip_perm: &flip_perm [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] #the correspondence between left and right keypoint id,used for flip transform。You can add an line(by "flip: False") behind of flip_pairs in RandomFlipHalfBodyTransform of TrainReader if you don't need it
num_joints_half_body: 8 #The joint numbers of half body, used for half_body transform
prob_half_body: 0.3 #The probility of half_body transform, set to 0 if you don't need it
upper_body_ids: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] #The joint ids of half(upper) body, used to get the upper joints in half_body transform
```
For more configs, please refer to [KeyPointConfigGuide](../../docs/tutorials/KeyPointConfigGuide_en.md)
#### 2、Others(used for test and visualization)
- In keypoint_utils.py, please set: "sigmas = np.array([.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07,.87, .87, .89, .89]) / 10.0", the value indicate the variance of a joint locations,normally 0.25-0.5 means the location is highly accuracy,for example: eyes。0.5-1.0 means the location is not sure so much,for example: shoulder。0.75 is recommand if you not sure。
- In visualizer.py, please set "EDGES" in draw_pose function,this indicate the line to show between joints for visualization。
- In pycocotools you installed, please set "sigmas",it is the same as that in keypoint_utils.py, but used for coco evaluation。
#### 3、Note for data preparation
- The data should has the same format as Coco data, and the keypoints(Nx3) and bbox(N) should be annotated.
- please set "area">0 in annotations files otherwise it will be skiped while training.
## BenchMark
We provide benchmarks in different runtime environments for your reference when choosing models. See [Keypoint Inference Benchmark](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/keypoint/KeypointBenchmark.md) for details.
## Reference
```
......
......@@ -45,8 +45,8 @@ PP-TinyPose是PaddleDetecion针对移动端设备优化的实时关键点检测
### 行人检测模型
| 模型 | 输入尺寸 | mAP (COCO Val) | 平均推理耗时 (FP32) | 平均推理耗时 (FP16) | 配置文件 | 模型权重 | 预测部署模型 | Paddle-Lite部署模型(FP32) | Paddle-Lite部署模型(FP16) |
| :------------------- | :------: | :------------: | :-----------------: | :-----------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| PicoDet-S-Pedestrian | 192*192 | 29.0 | 4.30ms | 2.37ms | [Config](../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams) | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.tar) | [Lite部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_lite.tar) | [Lite部署模型(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16_lite.tar) |
| PicoDet-S-Pedestrian | 320*320 | 38.5 | 10.26ms | 6.30ms | [Config](../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams) | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.tar) | [Lite部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_lite.tar) | [Lite部署模型(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16_lite.tar) |
| PicoDet-S-Pedestrian | 192*192 | 29.0 | 4.30ms | 2.37ms | [Config](../../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml) | [Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams) | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.tar) | [Lite部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_lite.tar) | [Lite部署模型(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16_lite.tar) |
| PicoDet-S-Pedestrian | 320*320 | 38.5 | 10.26ms | 6.30ms | [Config](../../picodet/legacy_model/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams) | [预测部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.tar) | [Lite部署模型](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_lite.tar) | [Lite部署模型(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16_lite.tar) |
......
......@@ -43,8 +43,8 @@ If you want to deploy it on the mobile devives, you also need:
### Pedestrian Detection Model
| Model | Input Size | mAP (COCO Val) | Average Inference Time (FP32)| Average Inference Time (FP16) | Config | Model Weights | Deployment Model | Paddle-Lite Model(FP32) | Paddle-Lite Model(FP16)|
| :------------------------ | :-------: | :------: | :------: | :---: | :---: | :---: | :---: | :---: | :---: |
| PicoDet-S-Pedestrian | 192*192 | 29.0 | 4.30ms | 2.37ms | [Config](../../picodet/application/pedestrian_detection/picodet_s_192_pedestrian.yml) |[Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams) | [Deployment Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.tar) | [Lite Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_lite.tar) | [Lite Model(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16_lite.tar) |
| PicoDet-S-Pedestrian | 320*320 | 38.5 | 10.26ms | 6.30ms | [Config](../../picodet/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams) | [Deployment Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.tar) | [Lite Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_lite.tar) | [Lite Model(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16_lite.tar) |
| PicoDet-S-Pedestrian | 192*192 | 29.0 | 4.30ms | 2.37ms | [Config](../../picodet/legacy_model/application/pedestrian_detection/picodet_s_192_pedestrian.yml) |[Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.pdparams) | [Deployment Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian.tar) | [Lite Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_lite.tar) | [Lite Model(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_192_pedestrian_fp16_lite.tar) |
| PicoDet-S-Pedestrian | 320*320 | 38.5 | 10.26ms | 6.30ms | [Config](../../picodet/legacy_model/application/pedestrian_detection/picodet_s_320_pedestrian.yml) | [Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.pdparams) | [Deployment Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian.tar) | [Lite Model](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_lite.tar) | [Lite Model(FP16)](https://bj.bcebos.com/v1/paddledet/models/keypoint/picodet_s_320_pedestrian_fp16_lite.tar) |
**Tips**
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册