Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ecc12fb4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ecc12fb4
编写于
2月 15, 2019
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
3. when runing in trt mode, do not allocate memory for parameters in fluid.
test=develop
上级
9cc6249c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
126 addition
and
83 deletion
+126
-83
paddle/fluid/framework/ir/fuse_pass_base.h
paddle/fluid/framework/ir/fuse_pass_base.h
+5
-0
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+31
-11
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h
...uid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h
+5
-2
paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.cc
...ence/analysis/passes/ir_params_sync_among_devices_pass.cc
+11
-0
paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.h
...rence/analysis/passes/ir_params_sync_among_devices_pass.h
+1
-0
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+62
-0
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+11
-70
未找到文件。
paddle/fluid/framework/ir/fuse_pass_base.h
浏览文件 @
ecc12fb4
...
...
@@ -14,6 +14,7 @@
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/scope.h"
...
...
@@ -24,6 +25,10 @@ namespace ir {
static
const
char
kParamScopeAttr
[]
=
"__param_scope__"
;
static
const
char
kFuseStatisAttr
[]
=
"__fuse_statis__"
;
// When we use trt or other third_party lib, the parameters are managered by
// the lib, but not the fluid. So we need to record them to avoid duplicate
// allocation.
static
const
char
kRepetitiveParamAttr
[]
=
"__repetitive_param__"
;
enum
FuseOptions
{
DO_NOT_FUSE
,
// fusing will not be done
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
ecc12fb4
...
...
@@ -14,8 +14,6 @@
#include <algorithm>
#include <set>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/inference/analysis/helper.h"
...
...
@@ -42,7 +40,6 @@ void RenameAndGetOutputs(
std
::
unordered_map
<
std
::
string
,
std
::
string
>
*
output_name_map
);
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
analysis
::
TensorRtSubgraphPass
::
ApplyImpl
(
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
graph
)
const
{
framework
::
ir
::
FusePassBase
::
Init
(
"tensorrt_subgraph_pass"
,
graph
.
get
());
...
...
@@ -55,9 +52,16 @@ std::unique_ptr<framework::ir::Graph> analysis::TensorRtSubgraphPass::ApplyImpl(
Get
<
int
>
(
"min_subgraph_size"
)
/*min subgraph size*/
);
fuser
();
std
::
vector
<
std
::
string
>
graph_param_names
=
ExtractParameters
(
graph
->
Nodes
());
// those parameter already exist in trt, and should not have another copy in
// fluid.
std
::
vector
<
std
::
string
>
repetitive_params
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
()
&&
!
Agent
(
node
).
subgraph
()
->
empty
())
{
CreateTensorRTOp
(
node
,
graph
.
get
());
CreateTensorRTOp
(
node
,
graph
.
get
(),
graph_param_names
,
&
repetitive_params
);
std
::
unordered_set
<
const
Node
*>
nodes2remove
(
Agent
(
node
).
subgraph
()
->
begin
(),
Agent
(
node
).
subgraph
()
->
end
());
...
...
@@ -72,6 +76,8 @@ std::unique_ptr<framework::ir::Graph> analysis::TensorRtSubgraphPass::ApplyImpl(
}
}
framework
::
ir
::
GraphSafeRemoveNodes
(
graph
.
get
(),
nodes2remove
);
graph
->
Set
(
framework
::
ir
::
kRepetitiveParamAttr
,
new
std
::
vector
<
std
::
string
>
(
repetitive_params
));
return
graph
;
}
...
...
@@ -89,8 +95,10 @@ std::string GenerateEngineKey(const std::set<std::string> &engine_inputs,
return
engine_key
;
}
void
TensorRtSubgraphPass
::
CreateTensorRTOp
(
framework
::
ir
::
Node
*
node
,
Graph
*
graph
)
const
{
void
TensorRtSubgraphPass
::
CreateTensorRTOp
(
framework
::
ir
::
Node
*
node
,
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>
&
graph_params
,
std
::
vector
<
std
::
string
>
*
repetitive_params
)
const
{
auto
*
op_desc
=
node
->
Op
();
auto
&
subgraph
=
*
Agent
(
node
).
subgraph
();
PADDLE_ENFORCE
(
!
subgraph
.
empty
());
...
...
@@ -124,10 +132,17 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
// is unique.
std
::
set
<
std
::
string
>
input_names
;
std
::
set
<
std
::
string
>
input_names_with_id
;
std
::
vector
<
std
::
string
>
params
;
// The node->inputs containes input tensors and parameters.
for
(
auto
*
x
:
node
->
inputs
)
{
input_names
.
insert
(
x
->
Name
());
input_names_with_id
.
insert
(
x
->
Name
()
+
std
::
to_string
(
x
->
id
()));
if
(
std
::
count
(
graph_params
.
begin
(),
graph_params
.
end
(),
x
->
Name
())
>
0
)
{
params
.
push_back
(
x
->
Name
());
}
}
std
::
set
<
std
::
string
>
output_names
;
std
::
set
<
std
::
string
>
output_names_with_id
;
for
(
auto
*
x
:
node
->
outputs
)
{
...
...
@@ -161,6 +176,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
PADDLE_ENFORCE
(
output_name_map
.
count
(
name
)
!=
0
);
output_mapping
.
push_back
(
output_name_map
[
name
]);
}
PADDLE_ENFORCE
(
!
output_mapping
.
empty
());
auto
*
vars
=
block_desc
.
Proto
()
->
mutable_vars
();
for
(
framework
::
ir
::
Node
*
node
:
graph
->
Nodes
())
{
...
...
@@ -172,22 +188,21 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
PADDLE_ENFORCE
(
!
block_desc
.
Proto
()
->
vars
().
empty
(),
"the block has no var-desc"
);
// Set attrs
op_desc
->
SetType
(
"tensorrt_engine"
);
op_desc
->
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
(
input_names
.
begin
(),
input_names
.
end
()));
op_desc
->
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
(
output_names
.
begin
(),
output_names
.
end
()));
op_desc
->
SetType
(
"tensorrt_engine"
);
PADDLE_ENFORCE
(
!
output_mapping
.
empty
());
op_desc
->
SetBlockAttr
(
"sub_block"
,
new_block
);
SetAttr
(
op_desc
->
Proto
(),
"subgraph"
,
block_desc
.
Proto
()
->
SerializeAsString
());
// Set attrs
SetAttr
(
op_desc
->
Proto
(),
"max_batch_size"
,
Get
<
int
>
(
"max_batch_size"
));
SetAttr
(
op_desc
->
Proto
(),
"workspace_size"
,
Get
<
int
>
(
"workspace_size"
));
SetAttr
(
op_desc
->
Proto
(),
"parameters"
,
ExtractParameters
(
graph
->
Nodes
()));
SetAttr
(
op_desc
->
Proto
(),
"output_name_mapping"
,
output_mapping
);
SetAttr
(
op_desc
->
Proto
(),
"parameters"
,
params
);
auto
enable_int8
=
Get
<
bool
>
(
"enable_int8"
);
auto
engine_key
=
...
...
@@ -200,6 +215,11 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
SetAttr
(
op_desc
->
Proto
(),
"enable_int8"
,
enable_int8
);
SetAttr
(
op_desc
->
Proto
(),
"engine_key"
,
engine_key
);
if
(
!
(
enable_int8
&&
calibration_data
.
size
()
==
0
))
{
std
::
copy
(
params
.
begin
(),
params
.
end
(),
std
::
back_inserter
(
*
repetitive_params
));
}
}
std
::
vector
<
std
::
string
>
ExtractParameters
(
...
...
@@ -211,7 +231,7 @@ std::vector<std::string> ExtractParameters(
for
(
const
auto
&
node
:
nodes
)
{
if
(
!
node
->
IsOp
())
continue
;
std
::
string
op_type
=
node
->
Op
()
->
Type
();
if
(
op_type
==
"feed"
)
{
if
(
op_type
==
"feed"
||
op_type
==
"fetch"
)
{
std
::
vector
<
std
::
string
>
output_names
=
node
->
Op
()
->
OutputArgumentNames
();
std
::
copy
(
output_names
.
begin
(),
output_names
.
end
(),
std
::
back_inserter
(
feed_outputs
));
...
...
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.h
浏览文件 @
ecc12fb4
...
...
@@ -14,6 +14,8 @@
#pragma once
#include <paddle/fluid/framework/ir/fuse_pass_base.h>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
...
...
@@ -26,8 +28,9 @@ class TensorRtSubgraphPass : public framework::ir::FusePassBase {
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
graph
)
const
override
;
private:
void
CreateTensorRTOp
(
framework
::
ir
::
Node
*
x
,
framework
::
ir
::
Graph
*
graph
)
const
;
void
CreateTensorRTOp
(
framework
::
ir
::
Node
*
x
,
framework
::
ir
::
Graph
*
graph
,
const
std
::
vector
<
std
::
string
>
&
graph_params
,
std
::
vector
<
std
::
string
>
*
repetitive_params
)
const
;
void
CleanIntermediateOutputs
(
framework
::
ir
::
Node
*
node
);
};
...
...
paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.cc
浏览文件 @
ecc12fb4
...
...
@@ -31,6 +31,13 @@ void IrParamsSyncAmongDevicesPass::RunImpl(Argument *argument) {
// The parameters are on the cpu, therefore, synchronization is not necessary.
if
(
!
argument
->
use_gpu
())
return
;
auto
&
graph
=
argument
->
main_graph
();
std
::
vector
<
std
::
string
>
repetitive_params
;
if
(
graph
.
Has
(
framework
::
ir
::
kRepetitiveParamAttr
))
repetitive_params
=
graph
.
Get
<
std
::
vector
<
std
::
string
>>
(
framework
::
ir
::
kRepetitiveParamAttr
);
LOG
(
INFO
)
<<
"Sync params from CPU to GPU"
;
PADDLE_ENFORCE
(
argument
->
gpu_device_id_valid
());
...
...
@@ -43,6 +50,10 @@ void IrParamsSyncAmongDevicesPass::RunImpl(Argument *argument) {
// Because there exists the case that new parameter variables are not added to
// the program in the analysis pass.
for
(
auto
&
var_name
:
all_vars
)
{
if
(
std
::
count
(
repetitive_params
.
begin
(),
repetitive_params
.
end
(),
var_name
))
{
continue
;
}
auto
*
var
=
scope
->
FindLocalVar
(
var_name
);
PADDLE_ENFORCE
(
var
!=
nullptr
);
if
(
var
->
IsType
<
framework
::
LoDTensor
>
()
||
...
...
paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.h
浏览文件 @
ecc12fb4
...
...
@@ -17,6 +17,7 @@
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/analysis_pass.h"
#include "paddle/fluid/platform/place.h"
...
...
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
ecc12fb4
...
...
@@ -16,9 +16,11 @@ limitations under the License. */
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
...
...
@@ -26,6 +28,37 @@ namespace paddle {
namespace
inference
{
namespace
tensorrt
{
using
FluidDT
=
framework
::
proto
::
VarType_Type
;
using
TRT_DT
=
nvinfer1
::
DataType
;
namespace
{
// NOLINT
TRT_DT
FluidDataType2TRT
(
FluidDT
type
)
{
switch
(
type
)
{
case
FluidDT
::
VarType_Type_FP32
:
return
TRT_DT
::
kFLOAT
;
case
FluidDT
::
VarType_Type_INT32
:
return
TRT_DT
::
kINT32
;
default:
return
TRT_DT
::
kINT32
;
}
PADDLE_THROW
(
"unkown type"
);
return
TRT_DT
::
kINT32
;
}
nvinfer1
::
Dims
Vec2TRT_Dims
(
const
std
::
vector
<
int64_t
>&
shape
)
{
PADDLE_ENFORCE_GT
(
shape
.
size
(),
1UL
,
"TensorRT' tensor input requires at least 2 dimensions"
);
PADDLE_ENFORCE_LE
(
shape
.
size
(),
4UL
,
"TensorRT' tensor input requires at most 4 dimensions"
);
PADDLE_ENFORCE
(
shape
.
size
()
==
4UL
||
shape
.
size
()
==
2UL
);
if
(
shape
.
size
()
==
4UL
)
return
nvinfer1
::
DimsCHW
(
shape
[
1
],
shape
[
2
],
shape
[
3
]);
return
nvinfer1
::
DimsCHW
(
shape
[
1
],
1
,
1
);
}
}
// namespace // NOLINT
/*
* Convert Op from Fluid to TensorRT Engine.
*/
...
...
@@ -110,6 +143,35 @@ class OpConverter {
}
}
void
ConvertBlockToTRTEngine
(
framework
::
BlockDesc
*
block_desc
,
const
framework
::
Scope
&
scope
,
const
std
::
vector
<
std
::
string
>&
inputs
,
const
std
::
unordered_set
<
std
::
string
>&
parameters
,
const
std
::
vector
<
std
::
string
>&
outputs
,
TensorRTEngine
*
engine
)
{
engine
->
InitNetwork
();
for
(
auto
&
input
:
inputs
)
{
if
(
parameters
.
count
(
input
))
continue
;
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope
,
input
);
auto
t_shape
=
framework
::
vectorize
(
t
.
dims
());
auto
*
var
=
block_desc
->
FindVar
(
input
);
PADDLE_ENFORCE
(
var
,
"no variable called %s"
,
input
);
PADDLE_ENFORCE_EQ
(
var
->
GetType
(),
FluidDT
::
VarType_Type_LOD_TENSOR
,
"TensorRT engine only takes LoDTensor as input"
);
engine
->
DeclareInput
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
Vec2TRT_Dims
(
t_shape
));
}
framework
::
proto
::
BlockDesc
*
block_proto
=
block_desc
->
Proto
();
ConvertBlock
(
*
block_proto
,
parameters
,
scope
,
engine
);
for
(
auto
&
output
:
outputs
)
{
engine
->
DeclareOutput
(
output
);
}
engine
->
FreezeNetwork
();
}
void
SetEngine
(
TensorRTEngine
*
engine
)
{
engine_
=
engine
;
}
virtual
~
OpConverter
()
{}
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
ecc12fb4
...
...
@@ -31,37 +31,6 @@ namespace paddle {
namespace
operators
{
using
FluidDT
=
framework
::
proto
::
VarType_Type
;
using
TRT_DT
=
nvinfer1
::
DataType
;
namespace
{
// NOLINT
TRT_DT
FluidDataType2TRT
(
FluidDT
type
)
{
switch
(
type
)
{
case
FluidDT
::
VarType_Type_FP32
:
return
TRT_DT
::
kFLOAT
;
case
FluidDT
::
VarType_Type_INT32
:
return
TRT_DT
::
kINT32
;
default:
return
TRT_DT
::
kINT32
;
}
PADDLE_THROW
(
"unkown type"
);
return
TRT_DT
::
kINT32
;
}
nvinfer1
::
Dims
Vec2TRT_Dims
(
const
std
::
vector
<
int64_t
>
&
shape
)
{
PADDLE_ENFORCE_GT
(
shape
.
size
(),
1UL
,
"TensorRT' tensor input requires at least 2 dimensions"
);
PADDLE_ENFORCE_LE
(
shape
.
size
(),
4UL
,
"TensorRT' tensor input requires at most 4 dimensions"
);
PADDLE_ENFORCE
(
shape
.
size
()
==
4UL
||
shape
.
size
()
==
2UL
);
if
(
shape
.
size
()
==
4UL
)
return
nvinfer1
::
DimsCHW
(
shape
[
1
],
shape
[
2
],
shape
[
3
]);
return
nvinfer1
::
DimsCHW
(
shape
[
1
],
1
,
1
);
}
}
// namespace // NOLINT
using
inference
::
Singleton
;
using
inference
::
tensorrt
::
TensorRTEngine
;
using
inference
::
tensorrt
::
TRTInt8Calibrator
;
...
...
@@ -161,7 +130,7 @@ class TensorRTEngineOp : public framework::OperatorBase {
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
enable_int8_
,
calib_res
->
calib_
.
get
()));
VLOG
(
3
)
<<
"start the calib trt engine thread"
;
Prepare
(
scope
,
calib_res
->
engine_
.
get
());
Prepare
TRTEngine
(
scope
,
calib_res
->
engine_
.
get
());
}));
}
...
...
@@ -259,7 +228,7 @@ class TensorRTEngineOp : public framework::OperatorBase {
trt_engine_
.
reset
(
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
enable_int8_
,
calibrator_
.
get
()));
if
(
true
)
{
Prepare
(
scope
,
trt_engine_
.
get
());
Prepare
TRTEngine
(
scope
,
trt_engine_
.
get
());
}
else
{
// create static engine
}
...
...
@@ -267,49 +236,21 @@ class TensorRTEngineOp : public framework::OperatorBase {
return
trt_engine_
.
get
();
}
void
Prepare
(
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
)
const
{
void
PrepareTRTEngine
(
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
)
const
{
LOG
(
INFO
)
<<
"Prepare TRT engine (Optimize model structure, Select OP "
"kernel etc). This process may cost a lot of time."
;
framework
::
proto
::
BlockDesc
block_desc
;
block_desc
.
ParseFromString
(
Attr
<
std
::
string
>
(
"subgraph"
));
framework
::
BlockDesc
block
(
nullptr
/*programdesc*/
,
&
block_desc
);
engine
->
InitNetwork
();
framework
::
proto
::
BlockDesc
block_proto
;
block_proto
.
ParseFromString
(
Attr
<
std
::
string
>
(
"subgraph"
));
framework
::
BlockDesc
block_desc
(
nullptr
,
&
block_proto
);
VLOG
(
4
)
<<
"parsed var size "
<<
block
.
AllVars
().
size
(
);
std
::
vector
<
std
::
string
>
output
_map
s
=
std
::
vector
<
std
::
string
>
inputs
=
Inputs
(
"Xs"
);
std
::
vector
<
std
::
string
>
outputs
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
// Add inputs
VLOG
(
4
)
<<
"declare inputs"
;
for
(
auto
&
input
:
Inputs
(
"Xs"
))
{
if
(
param_names_
.
count
(
input
))
continue
;
VLOG
(
4
)
<<
"declare input "
<<
input
;
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope
,
input
);
auto
t_shape
=
framework
::
vectorize
(
t
.
dims
());
auto
*
var
=
block
.
FindVar
(
input
);
// TensorRT engine need to create parameters. The parameter's description
// should be set in
PADDLE_ENFORCE
(
var
,
"no variable called %s"
,
input
);
PADDLE_ENFORCE_EQ
(
var
->
GetType
(),
FluidDT
::
VarType_Type_LOD_TENSOR
,
"TensorRT engine only takes LoDTensor as input"
);
engine
->
DeclareInput
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
Vec2TRT_Dims
(
t_shape
));
}
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
()
.
ConvertBlock
(
block_desc
,
param_names_
,
scope
,
engine
);
// Add outputs
for
(
auto
&
output
:
output_maps
)
{
engine
->
DeclareOutput
(
output
);
}
engine
->
FreezeNetwork
();
.
ConvertBlockToTRTEngine
(
&
block_desc
,
scope
,
inputs
,
param_names_
,
outputs
,
engine
);
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录