提交 eca58a62 编写于 作者: L Liu Yiqun

Add unittest for GPU.

上级 438aad24
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License"); Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. you may not use this file except in compliance with the License.
...@@ -21,19 +21,12 @@ limitations under the License. */ ...@@ -21,19 +21,12 @@ limitations under the License. */
DEFINE_string(dirname, "", "Directory of the inference model."); DEFINE_string(dirname, "", "Directory of the inference model.");
TEST(recognize_digits, CPU) { template <typename Place, typename T>
if (FLAGS_dirname.empty()) { void TestInference(const std::string& dirname,
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model"; const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
} std::vector<paddle::framework::LoDTensor*>& cpu_fetchs) {
std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
std::string dirname = FLAGS_dirname;
// 0. Initialize all the devices
paddle::framework::InitDevices();
// 1. Define place, executor and scope // 1. Define place, executor and scope
auto place = paddle::platform::CPUPlace(); auto place = Place();
auto executor = paddle::framework::Executor(place); auto executor = paddle::framework::Executor(place);
auto* scope = new paddle::framework::Scope(); auto* scope = new paddle::framework::Scope();
...@@ -49,37 +42,77 @@ TEST(recognize_digits, CPU) { ...@@ -49,37 +42,77 @@ TEST(recognize_digits, CPU) {
// 4. Prepare inputs // 4. Prepare inputs
std::map<std::string, const paddle::framework::LoDTensor*> feed_targets; std::map<std::string, const paddle::framework::LoDTensor*> feed_targets;
paddle::framework::LoDTensor input; for (size_t i = 0; i < feed_target_names.size(); ++i) {
srand(time(0)); // Please make sure that cpu_feeds[i] is right for feed_target_names[i]
float* input_ptr = feed_targets[feed_target_names[i]] = cpu_feeds[i];
input.mutable_data<float>({1, 28, 28}, paddle::platform::CPUPlace());
for (int i = 0; i < 784; ++i) {
input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
} }
feed_targets[feed_target_names[0]] = &input;
// 5. Define Tensor to get the outputs // 5. Define Tensor to get the outputs
std::map<std::string, paddle::framework::LoDTensor*> fetch_targets; std::map<std::string, paddle::framework::LoDTensor*> fetch_targets;
paddle::framework::LoDTensor output; for (size_t i = 0; i < fetch_target_names.size(); ++i) {
fetch_targets[fetch_target_names[0]] = &output; fetch_targets[fetch_target_names[i]] = cpu_fetchs[i];
}
// 6. Run the inference program // 6. Run the inference program
executor.Run(*inference_program, scope, feed_targets, fetch_targets); executor.Run(*inference_program, scope, feed_targets, fetch_targets);
// 7. Use the output as your expect.
LOG(INFO) << output.dims();
std::stringstream ss;
ss << "result:";
float* output_ptr = output.data<float>();
for (int j = 0; j < output.numel(); ++j) {
ss << " " << output_ptr[j];
}
LOG(INFO) << ss.str();
delete scope; delete scope;
delete engine; delete engine;
} }
TEST(inference, recognize_digits) {
if (FLAGS_dirname.empty()) {
LOG(FATAL) << "Usage: ./example --dirname=path/to/your/model";
}
LOG(INFO) << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
// 0. Initialize all the devices
paddle::framework::InitDevices();
paddle::framework::LoDTensor input;
srand(time(0));
float* input_ptr =
input.mutable_data<float>({1, 28, 28}, paddle::platform::CPUPlace());
for (int i = 0; i < 784; ++i) {
input_ptr[i] = rand() / (static_cast<float>(RAND_MAX));
}
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&input);
paddle::framework::LoDTensor output1;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
cpu_fetchs1.push_back(&output1);
// Run inference on CPU
TestInference<paddle::platform::CPUPlace, float>(
FLAGS_dirname, cpu_feeds, cpu_fetchs1);
LOG(INFO) << output1.dims();
#ifdef PADDLE_WITH_CUDA
paddle::framework::LoDTensor output2;
std::vector<paddle::framework::LoDTensor*> cpu_fetchs2;
cpu_fetchs2.push_back(&output2);
// Run inference on CUDA GPU
TestInference<paddle::platform::CUDAPlace, float>(
FLAGS_dirname, cpu_feeds, cpu_fetchs2);
LOG(INFO) << output2.dims();
EXPECT_EQ(output1.dims(), output2.dims());
EXPECT_EQ(output1.numel(), output2.numel());
float err = 1E-3;
int count = 0;
for (int64_t i = 0; i < output1.numel(); ++i) {
if (fabs(output1.data<float>()[i] - output2.data<float>()[i]) > err) {
count++;
}
}
EXPECT_EQ(count, 0) << "There are " << count << " different elements.";
#endif
}
int main(int argc, char** argv) { int main(int argc, char** argv) {
google::ParseCommandLineFlags(&argc, &argv, false); google::ParseCommandLineFlags(&argc, &argv, false);
testing::InitGoogleTest(&argc, argv); testing::InitGoogleTest(&argc, argv);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册