Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ebcb7a7a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ebcb7a7a
编写于
3月 02, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix grad check. test=develop
上级
3e3a983a
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
27 addition
and
36 deletion
+27
-36
paddle/fluid/operators/kldiv_loss_op.cc
paddle/fluid/operators/kldiv_loss_op.cc
+1
-1
paddle/fluid/operators/kldiv_loss_op.cu
paddle/fluid/operators/kldiv_loss_op.cu
+3
-2
paddle/fluid/operators/kldiv_loss_op.h
paddle/fluid/operators/kldiv_loss_op.h
+4
-15
python/paddle/fluid/tests/unittests/test_kldiv_loss_op.py
python/paddle/fluid/tests/unittests/test_kldiv_loss_op.py
+19
-18
未找到文件。
paddle/fluid/operators/kldiv_loss_op.cc
浏览文件 @
ebcb7a7a
...
...
@@ -81,7 +81,7 @@ class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
"The reduction type to apply to the output, available types "
"are 'none' | 'batchmean' | 'mean' | 'sum', 'none' for no "
"reduction, 'batchmean' for the sum of output divided by "
"batch size, 'mean' for the average valud of all output, "
"batch
mean
size, 'mean' for the average valud of all output, "
"'sum' for the sum of the output."
)
.
SetDefault
(
"mean"
);
...
...
paddle/fluid/operators/kldiv_loss_op.cu
浏览文件 @
ebcb7a7a
...
...
@@ -13,9 +13,10 @@ limitations under the License. */
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
sum
,
ops
::
KLDivLossKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
kldiv_loss
,
ops
::
KLDivLossKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
KLDivLossKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
sum
_grad
,
kldiv_loss
_grad
,
ops
::
KLDivLossGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
KLDivLossGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/kldiv_loss_op.h
浏览文件 @
ebcb7a7a
...
...
@@ -54,13 +54,12 @@ class KLDivLossKernel : public framework::OpKernel<T> {
auto
input_t
=
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
target_t
=
EigenVector
<
T
>::
Flatten
(
*
target
);
auto
loss_t
=
EigenVector
<
T
>::
Flatten
(
*
loss
);
// auto target_mask = (target_t > target_t.constant(0)).template cast<T>();
// auto output = (target_t * (target_t.log() - input_t)) * target_mask;
auto
output
=
target_t
.
binaryExpr
(
input_t
,
KLDivLossForward
<
T
>
());
if
(
"none"
==
reduction
)
{
loss_t
.
device
(
place
)
=
output
;
}
else
if
(
"batchmean"
==
reduction
)
{
loss_t
.
device
(
place
)
=
output
.
sum
()
/
static_cast
<
T
>
(
n
);
auto
output_sum
=
output
.
sum
().
eval
();
loss_t
.
device
(
place
)
=
output_sum
/
output_sum
.
constant
(
n
);
}
else
if
(
"mean"
==
reduction
)
{
loss_t
.
device
(
place
)
=
output
.
mean
();
}
else
if
(
"sum"
==
reduction
)
{
...
...
@@ -74,19 +73,17 @@ class KLDivLossGradKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
target
=
ctx
.
Input
<
Tensor
>
(
"Target"
);
auto
reduction
=
ctx
.
Attr
<
std
::
string
>
(
"reduction"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
const
int
n
=
input
->
dims
()[
0
];
const
int
numel
=
input
->
numel
();
const
int
n
=
input
_grad
->
dims
()[
0
];
const
int
numel
=
input
_grad
->
numel
();
const
int
expand
=
numel
/
loss_grad
->
numel
();
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
input_t
=
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
target_t
=
EigenVector
<
T
>::
Flatten
(
*
target
);
auto
input_grad_t
=
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
...
...
@@ -96,14 +93,6 @@ class KLDivLossGradKernel : public framework::OpKernel<T> {
auto
loss_grad_expand
=
loss_grad_t
.
broadcast
(
Array1
(
expand
));
input_grad_t
.
device
(
place
)
=
target_t
*
target_t
.
constant
(
-
1.0
)
*
loss_grad_expand
*
target_mask
;
// if (reduction == "none") {
// input_grad_t.device(place) =
// target_t * loss_grad_t * target_t.constant(-1.0);
// } else {
// auto loss_grad_expand = loss_grad_t.broadcast(Array1(numel));
// input_grad_t.device(place) =
// target_t * loss_grad_expand * target_t.constant(-1.0);
// }
if
(
"mean"
==
reduction
)
{
input_grad_t
.
device
(
place
)
=
input_grad_t
/
static_cast
<
T
>
(
numel
);
...
...
python/paddle/fluid/tests/unittests/test_kldiv_loss_op.py
浏览文件 @
ebcb7a7a
...
...
@@ -47,36 +47,37 @@ class TestKLDivLossOp(OpTest):
'Target'
:
target
,
}
loss
=
kldiv_loss
(
x
,
target
,
self
.
reduction
)
self
.
outputs
=
{
'Loss'
:
loss
}
self
.
outputs
=
{
'Loss'
:
loss
.
astype
(
'float32'
)
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
'X'
],
'Loss'
,
no_grad_set
=
set
([
"Target"
]),
max_relative_error
=
0.
1
)
[
'X'
],
'Loss'
,
no_grad_set
=
set
([
"Target"
]),
max_relative_error
=
0.
06
)
def
initTestCase
(
self
):
self
.
x_shape
=
(
3
,
7
,
7
)
self
.
reduction
=
'none'
class
TestKLDivLossOp2
(
TestKLDivLossOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
5
,
5
)
self
.
reduction
=
'batchmean'
# class TestKLDivLossOp2(TestKLDivLossOp):
# def initTestCase(self):
# self.x_shape = (3, 7, 7)
# self.reduction = 'batchmean'
#
#
# class TestKLDivLossOp3(TestKLDivLossOp):
# def initTestCase(self):
# self.x_shape = (2, 3, 5, 7, 9)
# self.reduction = 'mean'
#
#
# class TestKLDivLossOp4(TestKLDivLossOp):
# def initTestCase(self):
# self.x_shape = (5, 7)
# self.reduction = 'sum'
class
TestKLDivLossOp3
(
TestKLDivLossOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
5
,
7
,
9
)
self
.
reduction
=
'mean'
class
TestKLDivLossOp4
(
TestKLDivLossOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
5
,
7
)
self
.
reduction
=
'sum'
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录