Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
ea8013e4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ea8013e4
编写于
4月 09, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
can run test.py for generating
上级
f7be384e
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
236 addition
and
51 deletion
+236
-51
demo/seqToseq/api_train_v2.py
demo/seqToseq/api_train_v2.py
+62
-25
demo/seqToseq/seqToseq_net.py
demo/seqToseq/seqToseq_net.py
+6
-5
demo/seqToseq/translation/train.conf
demo/seqToseq/translation/train.conf
+2
-1
python/paddle/v2/config_base.py
python/paddle/v2/config_base.py
+4
-0
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+29
-20
python/paddle/v2/layers/__init__.py
python/paddle/v2/layers/__init__.py
+1
-0
python/paddle/v2/layers/beam_search.py
python/paddle/v2/layers/beam_search.py
+132
-0
未找到文件。
demo/seqToseq/api_train_v2.py
浏览文件 @
ea8013e4
import
sys
import
paddle.v2
as
paddle
import
paddle.v2.layer.beam_search
as
beam_search
def
seqToseq_net
(
source_dict_dim
,
target_dict_dim
):
def
seqToseq_net
(
source_dict_dim
,
target_dict_dim
,
is_generating
):
### Network Architecture
word_vector_dim
=
512
# dimension of word vector
decoder_size
=
512
# dimension of hidden unit in GRU Decoder network
encoder_size
=
512
# dimension of hidden unit in GRU Encoder network
beam_size
=
3
max_length
=
250
#### Encoder
src_word_id
=
paddle
.
layer
.
data
(
name
=
'source_language_word'
,
...
...
@@ -67,30 +71,63 @@ def seqToseq_net(source_dict_dim, target_dict_dim):
group_input2
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_proj
,
is_seq
=
True
)
group_inputs
=
[
group_input1
,
group_input2
]
trg_embedding
=
paddle
.
layer
.
embedding
(
input
=
paddle
.
layer
.
data
(
name
=
'target_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
)),
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
paddle
.
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
)
lbl
=
paddle
.
layer
.
data
(
name
=
'target_language_next_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
return
cost
if
not
is_generating
:
trg_embedding
=
paddle
.
layer
.
embedding
(
input
=
paddle
.
layer
.
data
(
name
=
'target_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
)),
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
paddle
.
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
)
lbl
=
paddle
.
layer
.
data
(
name
=
'target_language_next_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
return
cost
else
:
# In generation, the decoder predicts a next target word based on
# the encoded source sequence and the last generated target word.
# The encoded source sequence (encoder's output) must be specified by
# StaticInput, which is a read-only memory.
# Embedding of the last generated word is automatically gotten by
# GeneratedInputs, which is initialized by a start mark, such as <s>,
# and must be included in generation.
trg_embedding
=
beam_search
.
GeneratedInputV2
(
size
=
target_dict_dim
,
embedding_name
=
'_target_language_embedding'
,
embedding_size
=
word_vector_dim
)
group_inputs
.
append
(
trg_embedding
)
beam_gen
=
beam_search
.
beam_search
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
,
bos_id
=
0
,
eos_id
=
1
,
beam_size
=
beam_size
,
max_length
=
max_length
)
#
# seqtext_printer_evaluator(
# input=beam_gen,
# id_input=data_layer(
# name="sent_id", size=1),
# dict_file=trg_dict_path,
# result_file=gen_trans_file)
return
beam_gen
def
main
():
...
...
demo/seqToseq/seqToseq_net.py
浏览文件 @
ea8013e4
...
...
@@ -81,8 +81,10 @@ def gru_encoder_decoder(data_conf,
"""
for
k
,
v
in
data_conf
.
iteritems
():
globals
()[
k
]
=
v
source_dict_dim
=
len
(
open
(
src_dict_path
,
"r"
).
readlines
())
target_dict_dim
=
len
(
open
(
trg_dict_path
,
"r"
).
readlines
())
#source_dict_dim = len(open(src_dict_path, "r").readlines())
#target_dict_dim = len(open(trg_dict_path, "r").readlines())
source_dict_dim
=
1000
target_dict_dim
=
2000
gen_trans_file
=
gen_result
src_word_id
=
data_layer
(
name
=
'source_language_word'
,
size
=
source_dict_dim
)
...
...
@@ -131,9 +133,8 @@ def gru_encoder_decoder(data_conf,
decoder_group_name
=
"decoder_group"
group_inputs
=
[
StaticInput
(
input
=
encoded_vector
,
is_seq
=
True
),
StaticInput
(
input
=
encoded_proj
,
is_seq
=
True
)
StaticInput
(
input
=
encoded_vector
,
is_seq
=
True
),
StaticInput
(
input
=
encoded_proj
,
is_seq
=
True
)
]
if
not
is_generating
:
...
...
demo/seqToseq/translation/train.conf
浏览文件 @
ea8013e4
...
...
@@ -19,7 +19,8 @@ sys.path.append("..")
from
seqToseq_net
import
*
# whether this config is used for generating
is_generating
=
False
#is_generating = False
is_generating
=
True
### Data Definiation
data_dir
=
"./data/pre-wmt14"
...
...
python/paddle/v2/config_base.py
浏览文件 @
ea8013e4
...
...
@@ -76,6 +76,10 @@ class Layer(object):
"""
function to set proto attribute
"""
print
"======"
# print self.name
print
self
.
__parent_layers__
# print self.__context__
self
.
__context__
=
context
# short cut if myself is parsed before.
...
...
python/paddle/v2/layer.py
浏览文件 @
ea8013e4
...
...
@@ -135,6 +135,10 @@ class WithExtraParent(Layer):
"""
function to set proto attribute
"""
print
"*************"
# print context
print
self
.
name
print
self
.
__extra_parent__
kwargs
=
dict
()
for
p
in
self
.
__extra_parent__
:
p
.
to_proto
(
context
=
context
)
...
...
@@ -162,11 +166,12 @@ class WithExtraParent(Layer):
class
MemoryV2
(
WithExtraParent
):
def
__init__
(
self
,
name
,
**
kwargs
):
def
__init__
(
self
,
name
,
extra_input
=
None
,
**
kwargs
):
self
.
name
=
name
super
(
MemoryV2
,
self
).
__init__
(
name
=
name
,
parent_layers
=
dict
())
self
.
__kwargs__
=
kwargs
self
.
__boot_layer_name__
=
None
if
'boot_layer'
in
kwargs
:
begin_of_current_rnn
=
[]
# TODO(yuyang18): Fix inspect, it could be wrong when user invoke a
...
...
@@ -223,22 +228,6 @@ class MemoryV2(WithExtraParent):
return
True
class
LayerOutputV2
(
Layer
):
"""
LayerOutputV2 is used to store the result of LayerOutput in v1 api.
It will not store it's parents because layer_output has been parsed already.
"""
def
__init__
(
self
,
layer_output
):
assert
isinstance
(
layer_output
,
conf_helps
.
LayerOutput
)
self
.
layer_output
=
layer_output
super
(
LayerOutputV2
,
self
).
__init__
(
name
=
layer_output
.
name
,
parent_layers
=
dict
())
def
to_proto_impl
(
self
):
return
self
.
layer_output
class
StaticInputV2
(
object
):
def
__init__
(
self
,
input
,
is_seq
=
False
,
size
=
None
):
assert
isinstance
(
input
,
LayerV2
)
...
...
@@ -330,10 +319,15 @@ def mixed(size=0,
class
RecurrentLayerInput
(
WithExtraParent
):
def
__init__
(
self
,
recurrent_name
,
index
,
parent_layers
):
assert
len
(
parent_layers
)
==
1
self
.
__parents__
=
parent_layers
.
values
()[
0
]
parents_len
=
len
(
parent_layers
)
assert
parents_len
<=
1
if
parents_len
==
0
:
self
.
__parents__
=
[]
else
:
self
.
__parents__
=
parent_layers
.
values
()[
0
]
name
=
self
.
__parents__
[
index
].
name
if
index
>=
0
else
None
super
(
RecurrentLayerInput
,
self
).
__init__
(
name
=
self
.
__parents__
[
index
].
name
,
parent_layers
=
parent_layers
)
name
=
name
,
parent_layers
=
parent_layers
)
self
.
__recurrent_name__
=
recurrent_name
def
context_name
(
self
):
...
...
@@ -346,6 +340,10 @@ class RecurrentLayerInput(WithExtraParent):
in_links
=
map
(
lambda
x
:
x
.
name
,
self
.
__parents__
))
return
self
def
use_context_name
(
self
):
return
True
class
RecurrentLayerOutput
(
Layer
):
def
__init__
(
self
,
recurrent_name
,
index
,
parent_layers
):
...
...
@@ -428,6 +426,9 @@ def recurrent_group(step, input, name=None):
non_static_inputs
=
filter
(
lambda
x
:
not
isinstance
(
x
,
StaticInputV2
),
input
)
static_inputs
=
filter
(
lambda
x
:
isinstance
(
x
,
StaticInputV2
),
input
)
static_inputs
=
[
static_input
.
input
for
static_input
in
static_inputs
]
actual_input
=
[
RecurrentLayerInput
(
recurrent_name
=
name
,
...
...
@@ -436,6 +437,13 @@ def recurrent_group(step, input, name=None):
for
i
in
xrange
(
len
(
non_static_inputs
))
]
extra_input
=
None
if
len
(
non_static_inputs
)
==
0
:
extra_input
=
RecurrentLayerInput
(
recurrent_name
=
name
,
index
=-
1
,
parent_layers
=
{})
def
__real_step__
(
*
args
):
rnn_input
=
list
(
args
)
static_inputs
=
filter
(
lambda
x
:
isinstance
(
x
,
StaticInputV2
),
input
)
...
...
@@ -443,6 +451,7 @@ def recurrent_group(step, input, name=None):
mem_name
=
"__%s_memory__"
%
static_input
.
input
.
name
mem
=
memory
(
name
=
mem_name
,
extra_input
=
extra_input
,
is_seq
=
static_input
.
is_seq
,
size
=
static_input
.
input
.
calculate_size
,
boot_layer
=
static_input
.
input
)
...
...
python/paddle/v2/layers/__init__.py
0 → 100644
浏览文件 @
ea8013e4
import
beam_search
\ No newline at end of file
python/paddle/v2/layers/beam_search.py
0 → 100644
浏览文件 @
ea8013e4
import
paddle.v2
as
paddle
from
paddle.v2.config_base
import
Layer
from
paddle.trainer_config_helpers.default_decorators
import
wrap_name_default
from
paddle.trainer_config_helpers.layers
import
RecurrentLayerGroupSetGenerator
,
Generator
class
BaseGeneratedInputV2
(
object
):
def
__init__
(
self
):
self
.
bos_id
=
None
self
.
eos_id
=
None
def
before_real_step
(
self
):
raise
NotImplementedError
()
def
after_real_step
(
self
,
*
args
):
raise
NotImplementedError
()
class
GeneratedInputV2
(
BaseGeneratedInputV2
):
def
__init__
(
self
,
size
,
embedding_name
,
embedding_size
):
super
(
GeneratedInputV2
,
self
).
__init__
()
self
.
size
=
size
self
.
embedding_name
=
embedding_name
self
.
embedding_size
=
embedding_size
def
after_real_step
(
self
,
input
):
return
paddle
.
layer
.
max_id
(
input
=
input
,
name
=
'__beam_search_predict__'
)
def
before_real_step
(
self
):
predict_id
=
paddle
.
layer
.
memory
(
name
=
'__beam_search_predict__'
,
size
=
self
.
size
,
boot_with_const_id
=
self
.
bos_id
)
trg_emb
=
paddle
.
layer
.
embedding
(
input
=
predict_id
,
size
=
self
.
embedding_size
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
self
.
embedding_name
))
return
trg_emb
class
RecurrentLayerGroupSetGeneratorV2
(
Layer
):
def
__init__
(
self
,
eos_name
,
max_length
,
beam_size
,
num_results_per_sample
):
self
.
eos_name
=
eos_name
self
.
max_length
=
max_length
self
.
beam_size
=
beam_size
self
.
num_results_per_sample
=
num_results_per_sample
super
(
RecurrentLayerGroupSetGeneratorV2
,
self
).
__init__
(
name
=
eos_name
,
parent_layers
=
{})
def
to_proto_impl
(
self
,
**
kwargs
):
RecurrentLayerGroupSetGenerator
(
Generator
(
eos_layer_name
=
self
.
eos_name
,
max_num_frames
=
self
.
max_length
,
beam_size
=
self
.
beam_size
,
num_results_per_sample
=
self
.
num_results_per_sample
))
return
self
def
context_name
(
self
):
return
self
.
eos_name
+
".fake"
def
use_context_name
(
self
):
return
True
@
wrap_name_default
()
def
beam_search
(
step
,
input
,
bos_id
,
eos_id
,
beam_size
,
max_length
=
500
,
name
=
None
,
num_results_per_sample
=
None
):
if
num_results_per_sample
is
None
:
num_results_per_sample
=
beam_size
assert
num_results_per_sample
<=
beam_size
# logger.warning("num_results_per_sample should be less than beam_size")
if
isinstance
(
input
,
paddle
.
layer
.
StaticInputV2
)
or
isinstance
(
input
,
BaseGeneratedInputV2
):
input
=
[
input
]
generated_input_index
=
-
1
real_input
=
[]
for
i
,
each_input
in
enumerate
(
input
):
assert
isinstance
(
each_input
,
paddle
.
layer
.
StaticInputV2
)
or
isinstance
(
each_input
,
BaseGeneratedInputV2
)
if
isinstance
(
each_input
,
BaseGeneratedInputV2
):
assert
generated_input_index
==
-
1
generated_input_index
=
i
else
:
real_input
.
append
(
each_input
)
assert
generated_input_index
!=
-
1
gipt
=
input
[
generated_input_index
]
assert
isinstance
(
gipt
,
BaseGeneratedInputV2
)
gipt
.
bos_id
=
bos_id
gipt
.
eos_id
=
eos_id
def
__real_step__
(
*
args
):
eos_name
=
"__%s_eos_layer__"
%
name
generator
=
RecurrentLayerGroupSetGeneratorV2
(
eos_name
,
max_length
,
beam_size
,
num_results_per_sample
)
args
=
list
(
args
)
before_step_layer
=
gipt
.
before_real_step
()
before_step_layer
.
append_child
(
layer
=
generator
,
parent_names
=
[
before_step_layer
.
name
])
args
.
insert
(
generated_input_index
,
before_step_layer
)
predict
=
gipt
.
after_real_step
(
step
(
*
args
))
eos
=
paddle
.
layer
.
eos
(
input
=
predict
,
eos_id
=
eos_id
,
name
=
eos_name
)
predict
.
append_child
(
layer
=
eos
,
parent_names
=
[
predict
.
name
])
return
predict
# tmp = paddle.layer.recurrent_group(
# step=__real_step__,
# input=real_input,
# reverse=False,
# name=name,
# is_generating=True)
tmp
=
paddle
.
layer
.
recurrent_group
(
step
=
__real_step__
,
input
=
real_input
,
name
=
name
)
return
tmp
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录